Header Image - Academic Portfolio

Yearly Archives

2 Articles

On the h-adaptive PUM and the hp-adaptive FEM approaches applied to PDEs in quantum mechanics

by jppelteret

Authors: D. Davydov, T. Gerasimov, J-P. V. Pelteret, and P. Steinmann

In this paper the h-adaptive partition-of-unity method and the h- and hp-adaptive finite element method are applied to partial differential equations arising in quantum mechanics, namely, the Schrodinger equation with Coulomb and harmonic potentials, and the Poisson problem. Implementational details of the partition-of-unity method related to enforcing continuity with hanging nodes and the degeneracy of the basis are discussed. The partition-of-unity method is equipped with an a posteriori error estimator, thus enabling implementation of error-controlled adaptive mesh refinement strategies. To that end, local interpolation error estimates are derived for the partition-of-unity method enriched with a class of exponential functions. The results are the same as for the finite element method and thereby admit the usage of standard residual error indicators. The efficiency of the h -adaptive partition-of- unity method is compared to the h – and h p -adaptive finite element method. The latter is implemented by adopting the analyticity estimate from Legendre coefficients. An extension of this approach to multiple solution vectors is proposed. Numerical results confirm the remarkable accuracy of the h -adaptive partition-of-unity approach. In case of the Hydrogen atom, the h -adaptive linear partition-of-unity method was found to be comparable to the hp -adaptive finite element method for the target eigenvalue accuracy of 10-3. [1]

[1] Unknown bibtex entry with key [davydov2016a-preprint]
[Bibtex]

Computational electro- and magneto-elasticity for quasi-incompressible media immersed in free space

by jppelteret

Authors: J-P. V. Pelteret, D. Davydov, A. McBride, D. K. Vu, and P. Steinmann

In this work a mixed variational formulation to simulate quasi-incompressible electro- or magneto-active polymers immersed in the surrounding free space is presented. A novel domain decomposition is used to disconnect the primary coupled problem and the arbitrary free space mesh update problem. Exploiting this decomposition we describe a block iterative approach to solving the linearised multiphysics problem, and a physically and geometrically based, three-parameter method to update the free space mesh. Several application-driven example problems are implemented to demonstrate the robustness of the mixed formulation for both electro-elastic and magneto-elastic problems involving both finite deformations and quasi-incompressible media. [1]

[1] [doi] J-P. V. Pelteret, D. Davydov, A. McBride, D. K. Vu, and P. Steinmann, “Computational electro- and magneto-elasticity for quasi-incompressible media immersed in free space,” International Journal for Numerical Methods in Engineering, vol. 108, iss. 11, pp. 1307-1342, 2016.
[Bibtex]
@Article{pelteret2016a-preprint,
author = {Pelteret, J-P. V. and Davydov, D. and McBride, A. and Vu, D. K. and Steinmann, P.},
title = {Computational electro- and magneto-elasticity for quasi-incompressible media immersed in free space},
journal = {International Journal for Numerical Methods in Engineering},
year = {2016},
volume = {108},
number = {11},
pages = {1307--1342},
month = {jun},
abstract = {In this work a mixed variational formulation to simulate quasi-incompressible electro- or magneto-active polymers immersed in the surrounding free space is presented. A novel domain decomposition is used to disconnect the primary coupled problem and the arbitrary free space mesh update problem. Exploiting this decomposition we describe a block iterative approach to solving the linearised multiphysics problem, and a physically and geometrically based, three-parameter method to update the free space mesh. Several application-driven example problems are implemented to demonstrate the robustness of the mixed formulation for both electro-elastic and magneto-elastic problems involving both finite deformations and quasi-incompressible media.},
comment = {PREPRINT},
doi = {10.1002/nme.5254},
file = {pelteret2016a-preprint.pdf:PDF/pelteret2016a-preprint.pdf:PDF},
keywords = {Nonlinear electro-/magneto-elasticity; quasi-incompressible media; free space; finite strain},
owner = {Jean-Paul Pelteret},
publisher = {Wiley},
timestamp = {2016.03.21},
}