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Abstract

In this contribution several staggered schemes used to couple continuum mechanics
(CM) and molecular mechanics (MM) are proposed. The described approaches are
based on the atomistic-to-continuum correspondence, obtained by spatial averaging
in the spirit of Irving and Kirkwood, and Noll. Similarities between this and other
concurrent coupling schemes are indicated, thus providing a broad overview of dif-
ferent approaches in the field. The schemes considered here are decomposed into the
surface-type (displacement or traction boundary conditions) and the volume-type.
The latter restrict the continuum displacement field (and possibly its gradient) in
some sense to the atomistic (discrete) displacements using Lagrange multipliers. A
large-strain CM formulation incorporating Lagrange multipliers and a strategy to
solve the resulting coupled linear system using an iterative solver is presented.

Finally, the described coupling methods are numerically examined using two ex-
amples: uniaxial deformation and a plate with a hole relaxed under surface tension.
Accuracy and convergence rates of each method are reported. It was found that the
displacement (surface) coupling scheme and the Lagrangian (volume) scheme based
on either discrete displacements or the H; norm derived from continuous displace-
ment fields provide the best performance.
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1. Introduction

In recent decades there has been a growth of interest regarding approaches to
couple the description of matter at different scales, namely continuum mechanics
(CM), molecular mechanics (MM), and quantum mechanics (QM). Some approaches
couple the description in a sequential manner, that is to say the output from a
fine scale is directly used in a coarse scale. Usually a more challenging approach is
to perform concurrent coupling, in which principally different descriptions are used
simultaneously for different parts of the domain. Concurrent coupling methods can
be categorized by factors [35] such as the continuum model used, the presence or
absence of a "handshake” region, coupling boundary conditions and the governing
formulation. Often concurrent methods are tailored for use in a particular type
of problem, such as dynamic zero-temperature problems at both continuum and
atomistic sides [24, 30, 40] or a quasi-static continuum with either zero [22, 45] or
finite [46] temperature atomistic simulations. Very rarely are concurrent coupling
schemes applied to amorphous materials [42, 51|. Finally, there are methods that
bridge continuum and quantum descriptions [1, 8, 33, 58]. For a general overview we
refer the reader to [31, 32, 35].

It is important to note that concurrent methods may require an iterative ap-
proach to reach the solution; see for example the Bridging Scale Method (BSM) [45].
Alternatively, there are methods that are formulated in a monolithic manner such as
the Quasi-Continuum (QC) [36, 49, 52], the Bridging Domain Method (BDM) [56]
and the Arlequin method [5, 44], among others.

Many of the coupling methods directly or indirectly postulate a procedure to
compute continuum fields from atomistic simulations which are then used to define
the total Hamiltonian and/or constraints on primary (displacements or velocity)
fields. In many cases these can be considered as specializations of the theoretical
link established by Irving and Kirkwood [18], and Noll [38]. For example, in [28, 50]
the authors explicitly use results of the atomistic-to-continuum correspondence in
conjunction with the delta-function as an averaging kernel to calculate cell-integrated
quantities which are then used in the coupling procedure. Monolithic methods which
use a handshake interface between atomistic and continuum domains [5, 44, 56]
require the localization of the potential energy to a spatial point in order to define
the total Hamiltonian for the system.

Although monolithic concurrent coupling schemes such as the QC, BDM or
Arlequin methods are, in general, computationally faster than staggered coupling
schemes, there are several reasons why utilizing the latter may be desirable. First, if
one considers a thermo-mechanical quasi-static problem, there is a clear time-scale
separation between the two descriptions. This often leads to a definition of the



temperature field in terms of time-averaged atomistic fluctuations. In such a case
there is, it seems, no other choice but to solve the two problems independently while
coupling using staggered approaches. This is partly due to the fact that it is the
free-energy which is considered in CM. This quantity is not immediately available
from MM! and thus blending the two to derive a variational formulation is not triv-
ial. As an example, one of the extensions of the QQC method to finite temperatures
[14] effectively leads to a staggered solution approach. Alternatively, one can con-
struct effective (coarse-grained) thermodynamic potentials based on the principle of
maximum entropy. Using this approach coupling at non-uniform temperatures can
be achieved in a monolithic manner using, for example, another extension of the QC
method [3, 23].

Staggered schemes may be applied not only to couple MM and CM, but also
CM and QM [33, 58]. In the latter case, the principal differences between governing
equations? lead to staggered approaches being widely adopted. Note that the QM
Hamiltonian is defined for the system as a whole, as opposed to the MM Hamiltonian
which is attributed to collections of, at most, four particles.

The blending of CM and MM Hamiltonians is relatively simple when the systems
considered on the MM side consist of two-point potentials. In such a case the energy
attributed to each bond is situated at the geometric center of particle pairs and is
blended with the CM Hamiltonian according to a chosen weighting function. This,
however, becomes much more complicated and less unique for cases when three- and
four-point potentials are considered. To the best of our knowledge, coupling methods
based on the blending of Hamiltonians have not been applied to such cases. Even for
pair-potentials, bonds can be weighted in different ways; see the discussion in [22, 56]
and the references therein. The issue is principally similar to that of localizing the
potential energy of a particle system in order to obtain the balance of energy in terms
of atomistic quantities [12]. One further method to localize the potential energy for
the purpose of coupling atomistic and continuum models is proposed in [22].

Finally, staggered schemes are easier to implement in a non-intrusive fashion
when utilizing third-party finite-element (FE) and molecular dynamics (MD) codes.

Staggered methods do not need to define the total Hamiltonian in order to derive
the governing equations for the system as a whole from a variational principle. Even

!There are a few methods that describe how to obtain the free-energy macroscopically, such
as the integration of stresses with respect to the applied deformation gradient while keeping the
temperature fixed.

2The Kohn-Sham equations of the density functional theory on the QM side leads to an general
eigenvalue problem as opposed to the partial differential equations on the CM side



though this is the case, constraints between the corresponding kinematic and/or
kinetic quantities have to be introduced. In the most simple case, such constraints
can be imposed through the exchange of boundary conditions between the MM and
CM formulations; see for example [39, 48]. Other staggered approaches will be
proposed and considered in the main body of this contribution.

As it is clear from the short review in the above, there is an immense variety of
methods that couple different descriptions of matter concurrently. It is difficult to
compare approaches since each method is unique in terms of the description of the
governing equations, the continuum model and boundary conditions that are used,
and whether a handshake region is introduced. We are aware of only one publication
[35] in which different coupling methods are compared using the same test cases.

In this contribution, we aim at comparing different coupling approaches based on
the atomistic-to-continuum correspondence. We focus on the aspect related to both
staggered and monolithic schemes, namely the method used to constrain fields, while
keeping the other parts of the coupled formulation the same. We benchmark different
approaches of transferring information between the atomistic and continuum domains
in the context of staggered schemes. Coupling strategies are studied numerically
using two plane-strain examples and the results are compared to a full atomistic
simulation.

The rest of the paper is organized as follows: In Section 2 we review the basics of
calculating fields from atomistic (discrete) simulations pioneered in the works of Irv-
ing and Kirkwood, and Noll. Some general ideas with regards to staggered schemes
are presented in Section 3. In section 4 we describe four different coupling strate-
gies (two volume-type and two surface-type) based on the atomistic-to-continuum
correspondence. In Section 5 we obtain the weak form for the continuum formula-
tion. Furthermore we discuss the solution strategy for the resulting system of equa-
tions, including the preconditioners used in iterative solvers. The proposed staggered
strategies are then numerically studied in Section 6 using two problems, namely that
of uniaxial deformation of a plate and relaxation of a plate with a hole under surface
tension. Convergence rates and error measures are reported. Lastly a discussion and
conclusions are presented in Section 7.

2. Atomistic to continuum link

In this section we briefly remind the reader of the atomistic-to-continuum cor-
respondence based on the Irving and Kirkwood [18], and Noll [38] approach. In
particular we will limit ourselves to the Lagrangian averaging [10, 59] approach.
This idea seemed to be first mentioned in [28, p 1656]. As was shown by the authors



in previous works [9], this approach leads to the same results as Eulerian averaging
when applied to the solids studied in this paper. For more details we refer the reader
to [10-13, 18, 37, 38, 59] and the references therein.

The discrete displacement of each atom is introduced as

u® =x“ — X (1)

where x® is the current position of a particle, and X* represents its reference position.
In the case of molecular statics x* is determined by minimizing the total (atomistic)
potential energy of the system, that is miny. [I12, — I12,,], and X can be taken as
the initial position of the atoms. By index a we denote quantities related to atomistic
simulations. In contrast, in the molecular dynamic case the latter are statistically
averaged positions of atoms in the initial state of the system. For more details
regarding the second case see [10]. The inter-particle distance vector is denoted by
X = X — XP.

Performing averaging in the reference configuration via the spatial (isotropic)
kernel w(X* — X)) = w(|X* — X|), expressions for numerous CM fields that satisfy
the CM balance equations may be derived. Here X denotes the CM coordinate in
the material configuration.

In this way, the referential mass density is defined as

0.(X) = 3 mw(X® - X), (2)

from which the displacement can be obtained as

Y amiutw(X — X))
u,(X) = S mew(Xe — X) (3)

with the corresponding deformation gradient given by

F.(X)=1I+ > o Mu® — u(X)] ® Gradw (X — X).

0a(X)
Furthermore, the Piola stress is obtained as
1
_ _ = ap ap~ap
P.(X) = sz ® X @ (5)
with .
WP (X, X, XP) = / w(X* = X — aX*”) da (6)
0



where f# is the force exerted on atom a by atom S.

Note that the averaging (smoothing) operation (in particular Eq. (3)) can be
considered as a specialized case of the projection from the space of discrete displace-
ments defined at the reference positions X% to a continuum function defined at an
arbitrary point X in the reference configuration.

3. Staggered coupling schemes

The main feature of staggered coupling schemes is that the solution to the coupled
problem is obtained iteratively by solving the corresponding atomistic and continuum
parts sequentially. Generally, the domain of interest 2 = €. U €, is split into two
domains €2, and €). respectively to which the atomistic and continuum descriptions
are applied. This decomposition is highlighted in Fig. 1(a). Depending on the
coupling approach, these domains could have either zero or non-zero intersection.
Below we will consider staggered coupling strategies with non-zero intersection, that
is for which Q. N Q, =: Q... # 0. A staggered scheme of coupling leads explicitly
or implicitly to the transfer of “information” between the two approaches. This can
be achieved by introducing two additional non-intersecting regions €2, C (2,4, and
Qus C Qaye which are also shown in Fig. 1(a). In the former region the information
is passed from the continuum description to the atomistic one (C2A), whereas in the
latter the transfer occurs in the opposite direction (A2C).

For the case of molecular dynamics, other regions might be used to control the
temperature in the atomistic domain and/or to transfer heat fluxes to the contin-
uum description, such as is done in [46]. It is also possible to apply displacement
and temperature boundary conditions in the same region simultaneously. This was
achieved in [28] by dividing fields into a mean part (which is given by the continuum
solution) and a fluctuating part on which the Nose Hoover thermostat was applied.

Since we restrict the current study to molecular statics, we will not discuss issues
related to passing temperature (or heat flux) between the different formulations.

3.1. Continuum-to-Atomistic direction

To make the study more focused, we use an affine assumption for the displace-
ments of atoms in 2, (called padding atoms) to perform C2A transfer. Atoms in
this region are fully enslaved to the continuum solution and are displaced according
to the continuum fields. This strong-coupling approach is used in many coupling
schemes [15, 39, 45, 46, 53, 54]. This type of coupling can also be considered as a
special case of the BDM [56] and the Arlequin [5, 44] approach if, instead of a smooth
function to blend the continuum and the atomistic Hamiltonians, a Heaviside func-
tion is employed. As a result, those atoms whose energy does not contribute to the
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(b) Union of the continuum and atomistic
(a) Domains considered in staggered scheme  meshes

Figure 1: The domains and the corresponding mesh considered in the staggered
coupling methods; (a): The following domains are illustrated: the pure atomistic
domain €2,/, the domain from which atoms will be removed to produce a cavity €y,
the handshaking region {lyg, the domain with padding atoms (2,. Two auxiliary
domains (£2,/. and €,,) are introduced to speed up the calculation of fields in Qg
by considering only such atoms o with X* € {Qgs U Q,/c U Q). The size of
these domains were chosen to be large enough compared to the averaging radius
and the maximum pair interaction cut-off radius. As a result, the total atomistic
and continuum domains are given by €2, = U Qy U, U Qg U Qe U Q) and
Qe = Qo UQ, U Qe U Qyg respectively. The boundary of the continuum domain is
0Q. = 00> U9 UINE U IO U QL (b): The union of the corresponding meshes
used for both the continuum formulation and the calculation of fields from atomistic
simulations.

total Hamiltonian of the system will move solely in such a way as to minimize the
difference measure between the continuum displacements and atomistic (discrete)
displacements. This will result in atomistic displacements similar, if not equivalent,
to the affine displacement approach used here.

In the interest of brevity, we do not delve deeper into this discussion. However we
consider it important to indicate similarities between different coupling approaches.
The general problem of applying boundary conditions to the atomistic description



has been studied in [20, 21, 26, 27, 29].

3.2. Atomustic-to-Continuum direction

The transfer of information in the opposite direction will be based on the funda-
mental link between the atomistic and continuum description of matter described in
Section 2. Let us note that this is not the only conceivable approach that may be
used to relate MM to CM quantities and, in particular, to calculate the displacement
field based on the atomistic solution. Other approaches include, but are not limited
to: displacement decomposition into coarse and fine scales [22, 24, 40, 45, 47, 55],
Lagrange interpolation polynomial [39], linear interpolation [6, 41, 44}, moving least-
square approximation [57]. Most of these coupling methods explicitly or implicitly
use a link between some of the discrete quantities and their continuum counterparts.

In the next sections we describe a number of different possible coupling strate-
gies based on the atomistic-to-continuum correspondence considered here, as well as
indicate their similarities to other approaches available in the literature.

4. Coupling strategies

4.1. Surface-type

We propose two surface-type coupling methods in which information is passed
from the atomistic simulation to the continuum domain on the boundary 09 by
applying either Dirichlet or Neumann boundary conditions.

4.1.1. Kinematics

A number of methods have been developed to use the results of atomistic simu-
lations to provide displacement boundary conditions to the continuum domain; see
for example [46, 48]. Although in [48] the authors did not specifically discuss the
theoretical link between the atomistic and continuum descriptions, their approach
that evaluates the displacement of the center of mass of atoms in Voronoi-type cells
attributed to each FE node can be considered as a particular case of Eq. (3)3. More
precisely w = 1/Vioronei i each Voronoi cell and w = 0 elsewhere. For such a case
Eq. (3) gives the displacement of the center of mass.

Many methods that require refinement of the mesh to an atomistic level can also
be attributed to this group since they constrain the displacement of a given node

3In [48] the authors consider molecular dynamics and therefore utilize additional time averaging.
In our approach this will only add additional probability averaging (which is replaced with time
averaging using an Ergodic assumption). This was demonstrated in [10]. Similarities between the
two coupling approaches still hold true.



to the displacement of a particle with a reference coordinate that coincides with the
referential FE node. This result follows from postulating the atomistic displacement
fields using the Dirac delta distribution function o
> meutd(X* — X)

(X, T) = =5 , 7
w(X,7) = A (7)
which leads to the following displacement boundary condition as evaluated at each
node

U (X, 7) =u" Ja:X*= X, (8)
As a possible coupling strategy we impose displacement boundary conditions on
022 as evaluated using Eq. (3) from the atomistic simulations.

4.1.2. Kinetics

Coupling at the level of fluxes is performed in the heterogeneous multiscale
method [28, 30]. These authors employed the finite volume method to solve the
continuum equations, and therefore required that the integral of the flux (stress)
over the cell had to be calculated from atomistic simulations. This was achieved by
employing the results of Section 2 in conjunction with the Dirac d-distribution as an
averaging kernel.

As an alternative coupling approach, we propose that the referential traction
boundary conditions associated with the continuum domain are given by

T.(X) = P.(X) - N(X) (9)

where P,(X) is the Piola stress calculated from the atomistic simulation via Eq. (5)
and N is the outer normal to the boundary 0€22.

4.2. Volume-type
4.2.1. Discrete displacements

Many coupling schemes introduce constraints between continuum and atomistic
degrees-of-freedom in a certain region where both descriptions coexist [2, 15, 25, 34].
This region is usually called a handshaking region and is denoted here by (lys.
Lagrange multipliers or augmented Lagrange multipliers [7] are normally used to
impose such constraints.

One possible approach, such as that presented in [2]?, is to introduce constraints
for each atom in the handshaking region in a strong form, namely

g*=u(X)—u®* =0 Va:X*e Qys. (10)

4Note that although in this work the authors constrained velocities, this does not affect the
discussion about different possibilities that may be used to impose constraints.



The above requirement can be written in its continuum form as

Au(X) =) [u(X*) —u]5(X —X*) =0 Vz € s, (11)

«

which was used in [15].

Note that this is nothing other than the postulation of the continuum field of
displacement mismatch Au(X) as opposed to defining the atomistic displacement
field w, itself (through Eq. (3) or Eq. (7)). Differing from the Irving-Kirkwood
and Noll approach, this definition can not be used to obtain the corresponding flux
quantities for the CM balance laws.

Alternatively [15, 25, 34], the continuity of displacements can be imposed in a
weak sense, that is by minimizing the (weighted) least square difference between
continuum and discrete atomistic displacements:

9= [u(X*) - u]’ (12)

[0}

or

9= m[u(X*) - ul’ (13)

The mass-weighted case was used in the BSM [55] to define the projection operator
that relates atomistic displacements to their continuum counterparts. The continuum
version of such constraints are used in the BDM [56] and in the coupling stress-force
method [15] in the form of the constraint

g= /Q Au(x) - Au(x)dV = /Q D (X)) —uPi(@ - x*)dV. (14

[0}

For the current study, we will consider constraints as given in Eq. (14) imposed
on the continuum formulation by continuous Lagrange multipliers. Details of the
formulation and corresponding weak forms will be presented later.

4.2.2. Averaged displacements

In the previous section, the difference between the continuum displacement field
and the discrete displacements was introduced in a point-wise manner. Alternatively,
one can first define a projection operator which can be used to obtain a field based
on the atomistic displacements. In this contribution, this is achieved through the
use of Eq. (3). Given the smoothed atomistic displacement field, the compatibility
between the atomistic and continuum domains can be enforced both in terms of

10



the displacement field and its gradient (H; norm). Such constraints, as used in the
Arlequin® coupling method [5, 41, 44], in the most general case read as

g=|u—u,|l = frlu—u,] - [u—u,|+ fo|Gradu — Gradu,| : [Gradu — Gradu,| dV

Qus
(15)

where (5, and [y are non-negative weight parameters. The case of §; = 1 and 8, = 0
is equivalent to the Ls norm on Qyg, /1 = 0 and By = 1 gives the H; seminorm, and
finally 8; = 1 and 8y = 1 corresponds to the Hy norm. Note, that || - ||., < |- ||#,-

The main difference between this approach and the discrete displacement cou-
pling constraints presented previously is that the atomistic displacement field, as
opposed to the displacement difference, is introduced in the H; error norm. From
this follows the need to calculate the gradient of the displacement, which is, obviously,
not available as a discrete quantity attributed to each particle. Thus the discrete
displacement u® first needs to be projected onto a space of continuous functions and
only then the error norm can be used. In such a case, constraints are available only
in the weak form, as opposed to that given in Eq. (10).

Often Arlequin coupling constraints (Eq. (15)) are imposed using a continuous
Lagrange multipliers field A(X) as

gr = BiX - [u — u,] + foGradA : [Gradu — Gradu,| dV. (16)

Qus

Note that the original formulation of the Areqluin coupling method requires the
definition of a global Hamiltonian which is postulated as a mixture of Hamiltonians
attributed to each type of domains (atomistic and continuum). As a result, this
allows for the formulation of a monolithic coupled problem for which the solution is
obtained from a single system of linearized equations. One way to translate this to a
staggered scheme is to divide it into two blocks. The first block represents continuum
displacements and Lagrange multipliers and the second the atomistic displacements.
Subsystems related to those two blocks can then be solved iteratively. Due to this, the
continuum displacements and Lagrange multipliers are decoupled from the atomistic
displacements. This staggered scheme was used in [57] and in [41] (named ”Type
[a”).

In this paper, however, we will study the Arlequin-type constraints (Eq. (15))
without blending of the Hamiltonians since we aim at investigating performance

5In general this is not a staggered method, i.e. the solution to the coupled system is obtained
in one step by solving the resulting system of linear equations.

11



and efficiency of the different coupling schemes. Another difference between our
and previous works lies in the C2A link, for which the general Arlequin formulation
follows from the total Hamiltonian. In contrast we impose it by displacing padding
atoms according to the continuum solution. This, however, can be considered as a
particular case of weighting Hamiltonians, as mentioned in Section 3.1.

5. General formulation of the continuum problem

5.1. Balance equations and linearisation of large-strain formulation

We consider the general case of the continuum balance equations with both
Dirichlet and Neumann boundary conditions together with the constraints intro-
duced via Lagrange multipliers. Formulations corresponding to each of the coupling
strategies discussed in Section 4 will be obtained as a particular case of the general
formulation.

Consider the following non-linear boundary value problem which corresponds to
continuum quasi-static equations of motion in the material (Lagrangian) description:

DivP+ B =o0 (17)
u=u on 0§ (18)
T=P N=T on 0§27, (19)
where
00 = 00 U 0N with 9QY NINT = (. (20)

Here P, B, w, T denote the Piola stress, referential body force, prescribed boundary
displacement and prescribed Piola traction vector (force per unit reference surface
area) respectively.

Multiplying Eq. (17) by a vector-valued test function du which satisfies

du =0 on O (21)

and using the divergence theorem, the weak form follows as

F(u,0u) = / [P : Graddu — B - ju]dV — T 6udS =0. (22)
c o0g

12



Next, we limit ourselves by considering conservative mechanical systems®. There
exists a total potential energy functional II of the system defined as the sum of the
internal II;,; and external Il.. potential energies

I = Iing + e (23)
M = [ W)y (24)
Qc
My =— [ B-udV — T -udS (25)
Qe 809

where W(F'(u)) denotes the strain-energy per unit reference volume.
The principle of stationary potential energy” requires that the directional deriva-
tive with respect to the displacements u
d
Oll(u, du) = Dsyll(u) = ?H(u + edu) =0 (26)
€

e=0

vanishes in all directions du at the equilibrium state. The arbitrary vector field
du should satisfy Eq. (21). The stationary conditions (Eq. (26)) yields precisely
the weak form of quasi-static balance equations (Eq. (22)) with the constitutive
equation P = 0¥ /OF. In other words, for systems that allow the introduction of a
strain-energy function, the solution to Eq. (22) corresponds to the stationary point
of a functional; the total potential energy is stationary if, and only if, Eq. (22) is
satisfied.

Based on the stationary potential energy variational principle, we can introduce
constraints, namely Eq. (15), to the displacement field. Specifically, this can be
achieved by introducing a term with Lagrange multipliers gy(u, A) to the total po-
tential energy and solving the saddle point problem

inf sup IT* (u, A), (27)
%A

where IT*(uw, A) = [ipe(w) + Hexe (@) + ga(w, A). On denoting the vector of unknowns

6This is a subclass of general systems, which does not include problems such as heat dissipation,
propagation of a crack, etc. In other words, Eq. (22) is a more general description which allows
non-conservative constitutive models P = P(F';internal variables).

"Its generalization to dynamics is the Hamilton’s variational principle: & fttol L(u,u) dt = 0 where
L(u,4) = I(u) — K(4) and K denotes kinetic energy. This principle yields the weak form of the
dynamic continuum balance equations.

13



and its variation as

U:{'ﬂ, 5U:l§';] (28)

the stationary condition §II*(U, 06U ) = 0 results in

o1l Igx dgx _/ .
Gu DU G DUt G A= | S(B) B, fu) 4V

—/ B - judV — T - dudS
Qe 80g
+01 / A dudV + 52/ Grad : Graddu dV
Qus Qps
+51 / [u —u,) - OAdV + 52/ [Gradu — Gradu,| : GraddAdV =0
QHS QHS

where S is the (second) Piola-Kirchhoff stress tensor, and

E:%[FT-F—I] (30)

is the Green-Lagrange strain tensor, the variation of which reads §E = sym(F" -
Graddu),
where sym(e) denotes the symmetric part of the second-order tensor.

Linearization of 0 E follows as

DaudE = sym (Grad" Au - Graddu) . (31)

Linearization of the Lagrangian multipliers’ contribution to the non-linear equation
Eq. (29) follows as

DauG =5 /

Qus

AX-dudV + [y / Grad AX : Graddu dV
+ 51 / Au - XAV + By / GradAwu : GraddAdV,
Qps Qns

which is clearly symmetric with respect to AU and 0U.
Following our previous work [10], the material response is governed by the Saint-
Venant-Kirchhoff constitutive law

S=C:E (33)

14



where C is a fourth-order elastic tensor that potentially captures anisotropies arising
from a crystal lattice.
The linearisation of Eq. (33) therefore reads

DauS = C :sym(F" - GradAu). (34)

5.2. Discretization in space and the resulting system of equations

Finally, we introduce a finite element basis for both virtual and real displacements
and Lagrange multipliers

u(X) =) u'N'(X)

AX)=> NN'(X). (85)

where the index I represents a degree-of-freedom and N'(X) is the corresponding
vector-valued shape function. The variation and increment of w and X follow as

Au(X) =) Au'N'(X)
Ju(X) =Y ou'N'(X) 0
AXX) =) AMN'(X)
SA(X) =) ONN'(X)

Requiring that the linearisation of Eq. (29) holds V du!, 6\, the system of linearized
algebraic equations

K. K. 0 Auc F. K K
Kie Kun Gpa Aup | = | Fy , K= { ch KCh ] (37)
0 G, O AX F, he  TXhh

15



where
K = / [FT . GradN'] : C: [FT . GradN’] + 8 : [Grad” N7 - Grad N'] d{38)
Qc

G = Gg{l=p [ N'.-N7av + 3, / GradN' : GradN” dV

QC C
Fl = / B-N'dV + T-Nde—/ S:0E"dV (39)
Qe o0g Qe
Fl = B-N'dV + T -N'dS— | S:6E'dV (40)
Qc 09 Qe
- 51/ A-Ndv — 62/ Grad\ : Grad N’ dv (41)
Qs Qus

FL =5 / [w, —u] - NTdV + B, / [Gradu, — Gradu] : Grad N’ dV
Qus

Qus

is obtained. The quantity Au. denotes those degrees-of-freedom that lie in €/Qysg,
whereas Auj, corresponds to those in the handshake region Qyg, and 0 E' = sym(F*-
GraddN™).

Note that we consider the case when Qus N INY = (), that is to say that the
Dirichlet boundary conditions are applied to the "outer” boundary of the contin-
uum domain where no Lagrange multipliers are defined. The alternative case would
require additional attention. In particular, the sparsity pattern of the resulting ma-
trices would need to take into account Dirichlet boundary conditions to exclude the
prescribed degrees-of-freedom from the system of equations. Otherwise, the conden-
sation of the resulting matrix may result in some rows of Gy, (and columns of Gj,)
being completely zero, rendering the resulting matrix noninvertible.

Each of the coupling strategies follow as a special case to this formulation. When
we remove all blocks in the resulting matrix and vectors associated with the Lagrange
multiplier field and apply atomistic Dirichlet boundary conditions on 0% together
with the prescribed Dirichlet boundary conditions on 9QL U 9QF U 9P U 9O, we
obtain the surface-type displacement coupling method. Using a similar approach
but replacing the Dirichlet conditions with Neumann boundary conditions leads to
the surface-type traction coupling method. The volume coupling method which
minimizes the point-wise difference between the continuum displacement field and
the atomistic displacements follows after the substitution of the integrals with ; by
a sum over all particles in 2yg and dropping terms associated with (5. This can be
considered as a specific quadrature integration rule, that is different for each cell.
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5.8. Schur compliment and preconditioners for iterative solvers

The solution of the system Eq. (37) is obtained by forming the Schur compliment.
By multiplying the first equation

ch . AUC + Kch . Auh = FC (42)
with Ky, - Kc_c1 from the left and subtracting the second equation we obtain

[Khe - K- Koy — Ky -Auy — Gy - AX =K - K- F. — Fp, = Fp. (43)

S

-~

Kn

Next, multiplication with Gy, R,:l from the left and subtraction of the third equation
in Eq. (37) leads to

Gy K" Gy AXN=F, — Gy, - K, -Fj = F), (44)

K

Since K., and K}, are symmetric positive-definite matrices and K, = th has full
column rank, |'~(h is also positive-definite. Similarly, G, = th has full column rank
and K, is positive-definite.

Note that although both K, and K, are full matrices, for use with solution
procedures utilizing iterative solvers they need not be directly computed and stored,
but can rather be considered as linear operators acting on vectors.

We consider the case when the same basis functions are used to discretize the
Lagrange multipliers and the displacements in {2yg. This leads to Gy, being square
and invertible. For the Ly coupling method this is equivalent to the mass matrix on
Qus. Therefore, the outer Schur compliment can be solved by multiplying Eq. (44)
with G;ﬁ . Rh . G;/\l which leads to

AX =G} [K, -Gl -Fy—Fy). (45)

For the application of G;,' to a vector, the SSOR preconditioner was utilized in
conjunction with the Conjugate Gradient (CG) method. Knowing A, Eq. (43)
can be solved for Au,. To achieve this, we form the corresponding RHS (F). To
form a preconditioner to K, we do the following: First, K, is approximated by
K, ~ K. - D! - K, — K, := K;,, where D, is a diagonal part of K. Next, the
action of the preconditioner on a vector y is considered to be the solution of the
K, - x = y using the CG method with a low number of iterations. Finally, Eq. (42)
is solved for Au.. The SSOR preconditioner was also used in the inversion of K.,

and in the definition of the inner Schur compliment K,.
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6. Numerical examples

In the following examples we consider a FCC crystal of copper. On the atomistic
side it is modelled using the EAM potential given by Foiles et al. [16], which has
the lattice parameter a = 3.615A at zero temperature and the cut-off radius 4.94A.
Atomistic simulations are performed using the LAMMPS open-source software [43].
The continuum formulation has been implemented using the open-source deal.ll[4]
FEM library.

The quartic averaging kernel of radius R was used (Fig. 2) to evaluate the con-
tinuum fields from the atomistic simulations. Its analytical expression is given by

35 919

wir) = 22 1=+ (16)

with r = |[X* — X|/R,, and V = 7R3 If not mentioned otherwise, all the results
are obtained with averaging radius R, equal to 9A.

0.012

0.01

0.008 |

0.006 |

w[1/A?]

0.004

0.002

0

x [A]

Figure 2: Quartic kernels of different averaging (smoothing) radius.

In our implementation we employed the following mechanisms to speed-up stress
fields calculation: Firstly, we consider only those particles o for which [X* — X ;| <
R, + R., where R, is the maximum cut-off distance for the here considered two-point
EAM potential and R,, is the radius of the averaging kernel. In other words, if this
condition is not satisfied there is no particle 8 with which « interacts (i.e. f* # o)
such that the corresponding bond is non-zero @w** (X, X% X#) # 0. Secondly, we
limit the atoms considered for field calculations during staggered coupling schemes
to particles for which X¢ € Qpg U Q,/c U Q. Finally, bond values were cached
during calculations. The calculation of kinematic quantities was also accelerated by
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considering for each node I only such particles a : | X* — X ;| < R,,. Other particles,
obviously, do not contribute to the value of the field evaluated at a particular node
I.

The cubic anisotropy continuum parameters are taken from our previous studies
[9] as: CH = 167.26 GP&, 012 = 124.15 GPa, 044 = 76.44 GPa.

All results are obtained with the mesh depicted in Fig. 1(b), which was created
with the Gmsh meshing program [17]. From the atomistic simulation point of view,
a square plate is oriented along the crystallographic axes. The number of unit cells
in the third dimension was fixed to 4, whereas in the two other dimensions was set
to 140 to be comparable with our previous studies [10]. In the numerical example
with a hole, the ratio between the diameter of the hole and the width of the plate is
kept equal to 1/5. The side length of the domains ./, Qap, Qns, Qa/c and €2, are 80,
74, 60, 46 and 32 unit cells respectively. All atomistic simulations were performed
with periodic boundary conditions in the third dimension.

For coupling methods which include Lagrange multipliers, the following constants
were used: For the discrete displacement (volume-type) coupling method (denoted
in figures as \s) and for the continuous displacement (volume-type) coupling method
with Ly norm (denoted in figures as Ap,), /1 = C1; is specified. For the continuous
displacement (volume-type) coupling with H; norm (denoted in figures as Ay, ), /1 =
2011 /V (2. /Qys) and fy = C11 are employed as an attempt to generalize the optimal
values of these constants reported in [5] for a one-dimensional Arlequin method. The
surface-type coupling displacement method is denoted by U, and the surface-type
coupling traction method is denoted by T,,.

Lagrange-multipliers fields are introduced for the corresponding coupling meth-
ods in the Qyg region. Q)1 basis functions are used for the continuum formulation.
The left, right, bottom and top parts of the continuum domain where the displace-
ment boundary conditions are to be applied are denoted by 02, 9QF, 9QP, 9Ot
respectively. The boundary of the continuum domain used for the strong coupling
is denoted by 0€2%. Surface-type coupling methods impose on this boundary either
traction or displacement boundary conditions based on fields calculated from the
atomistic simulation.

6.1. Averaging radius convergence

This section serves as a benchmark used to evaluate the Lagrangian averaging
approach for calculating the local (microscopic) continuum quantities from the atom-
istic simulations.

Consider a RVE (Fig. 3(a)) modelled solely with MM under periodic boundary
conditions under uniaxial loading for which the applied macroscopic deformation
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(a) Uniaxial (b) Surface tension

Figure 3: Particles displacements in a plate in x direction as obtained from the fully
resolved atomistic simulations with periodic RVEs. (a): homogeneous plate with a
uniaxial stretch of 1.0003951; (b): plate with a hole relaxed under surface tension.

gradient is

F:[%l (1)] (47)

which is produced through an affine displacement of all atoms. No additional energy
minimization step is required for the case of homogeneous deformation of a simple
crystal. The dependence of the continuum fields obtained from the atomistic simu-
lations on the radius of the averaging kernel (Fig. 2) is studied for the unstructured
mesh illustrated in Fig. 1(b). To the best of our knowledge, only structured grids
have been used by other researchers. Utilizing unstructured meshes may lead to the
deterioration of the quality of fields calculated using averaging techniques.

To this end we compare continuum fields (displacement, deformation gradient,
Cauchy stress) evaluated at each grid point from the atomistic simulation to the
macroscopic counterparts, namely the macroscopic deformation gradient, macro-
scopic stress (which equals the Virial pressure taken with an opposite sign [11])
and the applied affine displacement. The results are presented in Fig. 4.

From this data, several observations can be made. For the quartic averaging
kernel applied to copper, the resulting displacement fields are the most accurate and
have the least noise (scatter) as compared to other fields for the same averaging
radius. The Cauchy stress obtained via Eq. (4) and Eq. (5) is the least accurate and
has the most noise. The reason for this is most likely the calculation of the integral
in Eq. (6) which depends on the intersection of the interparticle vector distance X*?
and the averaging kernel. Consequently when applied to general problems we expect
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Figure 4: The convergence of continuum fields as evaluated from pure atomistic
solution under uniaxial deformation and with periodic boundary conditions. Mean
values and standard deviations of the difference between obtained and the expected
values are shown. Values are given in dimensionless form with ¢ = 3.615, the macro-
scopic Cauchy stress Y17 = 0.066 GPa and the macroscopic deformation gradient
VU;; = 3.952 1074.

to have more variation in kinetic quantities (stresses) as compared to kinematic ones
(displacement, deformation gradient).

Overall, the quality of the results obtained using the atomistic-to-continuum cor-
respondence principle is good.

6.2. Patch test

Next, we study the four staggered coupling strategies described in Section 4
for the same problem, namely uniaxial deformation of a plate. Continuum and
atomistic domains are considered as described in caption of Fig. 1(a). On 9. and
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0%, displacement in x direction of equal value and opposite sign is prescribed, while
on 90 and 90! displacement in y direction is prescribed to be zero. Results of the
patch test for different coupling strategies are presented in Fig. 5.
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Figure 5: Convergence of continuum fields as evaluated from the atomistic domain
for different coupling strategies under uniaxial deformation gradient. Fields obtained
in a part of the atomistic domain (€2, U2, US2,,USdg) are compared to the analytical
solution in terms of the mean error and its standard deviation.

Firstly, it should be noted that the traction surface-type coupling method did
not converge for a simple patch problem. As we will see later, it will work for the
plate with a hole problem, but will not be the best performer. In terms of scatter,
the other four coupling methods are almost identical. The accuracy in terms of
the resulting displacement field is approximately the same. However, in terms of
kinetic quantities, the H; volume-type coupling method performs best. This is to
be expected as displacement gradients are used to form a strain measure (Eq. (30))
which is directly connected to the stress field through the constitutive equation (Eq.
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Figure 6: Convergence of atomistic and continuum solutions for different coupling
schemes. Left: plate with a hole; Right: uniaxial tension. Coupling methods are
denoted as follows: strong displacement U,, strong traction T,, weak H; Lagrange

multipliers Ay,, weak Ly Lagrange multipliers Ar,, weak Lagrange multipliers based
on delta-distribution As.

Apart from the traction coupling method, the convergence rates of all coupling
methods (Fig. 6 right) for the patch test are almost identical. Overall, it can be
concluded that the coupling methods, as applied to the patch test, are accurate.

6.3. Plate with a hole

Finally, we move to a numerical example with a non-homogeneous solution,
namely that of a 2d plate with a hole relaxed under surface tension as is illustrated
in Fig. 3(b). All atoms within the domain 2}, are removed from the perfect lattice
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configuration. Due to the missing neighbours, the system is no longer in equilibrium
and minimization of the total energy results in the displacement of atoms.

For this example there is no analytical solution available, thus in addition to the
five coupling strategies considered, we add a fully resolved atomistic solution and
denote it by A in the figures. As another point of comparison, we plot the local
fields obtained from the surface enhanced continuum theory (SEC) [19], which we
successfully applied in our previous studies [9]. As explained in [9], the parameters
to the SEC were determined by fitting the macroscopic size effect.

The local Cauchy stresses, displacements and displacement gradients from the
atomistic, SEC and coupled approaches are compared in Figs. 7 and 8. The results
were evaluated along the lines x = 0 and y = 0. Due to the symmetry of the
problem we do not plot all components of fields, but only those which are different.
For example, it is sufficient to report oq1(x), which equals o2 (y).

We defer the discussion of the results until the next section, noting only that the
strong traction coupling method did converge for a plate with a hole.

7. Discussion and Conclusions

From the numerical results obtained in the previous section we can draw several
conclusions.

First of all, the method based on the traction (surface-type) coupling is not ro-
bust, at least for the studied problems and FCC material. Although it did converge
for a more complicated example of a plate with a hole, it failed to reproduce a simple
patch test of uniaxial deformation®. In any case, the usage of tractions as boundary
conditions relies on the evaluation of the Piola stress at appropriate nodes. This
operation is considerably more resource consuming than the kinematic fields since
it involves the double loop over the particles and calculation of a bond integral for
each pair of interacting particles and each node of interest (Egs. 5 and 6). Given
all performance enhancing measures, the kinetic calculations still took considerably
more time as compared to kinematic calculations. Thus, staggered coupling schemes
based on kinematic coupling are generally more efficient from a computational per-
spective. In particular, the surface-type displacement coupling method is the most
efficient given the fact that there is no need to form the Schur-compliment on the
continuum side. Rather, the resulting system of equations can be solved right away
using any iterative solver, such as the CG solver.

8During development of this work the traction-based coupling method was however successfully
applied to a 1d deformation of a bar.
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Figure 7: A comparison of kinetic quantities (Cauchy stress) as calculated from
the atomistic and continuum approaches for the plate with a hole relaxed under
surface tension. The macroscopic stress calculated from the fully-resolved atomistic
simulation equals ¥;; = 0.02892 GPa. Coupling methods are denoted as follows:
strong displacement U,, strong traction T,, weak H; Lagrange multipliers A\y,, weak
L, Lagrange multipliers \p,, weak Lagrange multipliers based on delta-distribution
As. The suffixes [MS] and [FE] denote fields obtained from atomistic and continuum
sides of the coupled problem, respectively. R and R,, denote the radius of the hole
and the averaging kernel, respectively. H Sy, and H S, indicate beginning and end
of the handshaking region.

For the simple case of uniaxial deformation, the convergence rates of all coupling
methods, excluding that which is traction-based, are almost identical. This, however,
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Figure 8: A comparison of kinematic quantities (displacements, deformation gradi-
ent) as calculated from the atomistic and continuum approaches for the plate with
a hole relaxed under the surface tension. Coupling methods are denoted as follows:
strong displacement U,, strong traction T,, weak H; Lagrange multipliers \y,, weak
L, Lagrange multipliers \p,, weak Lagrange multipliers based on delta-distribution
As. The suffixes [MS] and [FE] denote fields obtained from atomistic and continuum
sides of the coupled problem, respectively. R and R,, denote the radius of the hole
and the averaging kernel, respectively. H Sy, and HS,4 indicate beginning and end
of the handshaking region.

does change for the case of a plate with a hole, where the surface-type displacement
boundary condition coupling method converges faster than the other methods and
is therefore preferable from this perspective.

The accuracy of the coupling methods were assessed by comparing the results for
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the patch test to its analytical solution, and the coupled results for the plate with a
hole problem to those obtained from the fully resolved atomistic simulation. In terms
of the first test problem, the preferred methods are the displacement (surface-type)
coupling and the H; displacement (volume-type) coupling. For the plate with a hole
problem, the coupling methods studied here show the most difference in terms of ki-
netic quantities, and in particular oy; (z). Overall, the best performance was obtained
using the displacement (surface-type) coupling method, the discrete displacements
(volume-type) coupling method and the H; continuous displacement (volume-type)
coupling method. Comparatively, the coupling strategies considered here produce
rather similar results. These could likely be made more accurate if other factors such
as the size of (lyg, the mesh size, constants $; and [y and the like are adjusted. It
is worth noting that the coupled formulation, although not perfect, produced results
closer to the fully-resolved atomistic simulation when compared to the SEC.

In this paper we have studied different staggered coupling strategies based on the
atomistic-to-continuum correspondence. While developing the theoretical formula-
tion, similarities to other methods proposed in the literature have been given. Our
implementation was based on two robust C++ libraries, namely LAMMPS [43] for
molecular statics simulations, and deal.Il [4] for solving the partial differential equa-
tions of continuum mechanics. The latter also provided an infrastructure to calculate
and use fields from the atomistic simulation. Both parts of the implementation are
very general and can be applied to domains of arbitrary geometry and meshes.

In a future work we would like to apply the averaging procedure to polymer
systems with nano-particles and to calculate local fields. The coupling strategies
considered here will be generalized to finite temperatures in a manner similar to
[42, 46].
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