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ABSTRACT

Numerous challenges are faced in investigations aimed at developing a better understanding of the patho-

physiology of obstructive sleep apnoea. The anatomy of the tongue and other upper airway tissues, and the

ability to model their behaviour, is central to such investigations.

In this thesis, details of the construction and development of a three-dimensional finite element model of

soft tissues of the human upper airway, as well as a simplified fluid model of the airway, are provided. The

anatomical data was obtained from the Visible Human Project, and its underlying micro-histological data

describing tongue musculature were also extracted from the same source and incorporated into the model.

An overview of the mathematical models used to describe tissue behaviour, both at a macro- and microscopic

level, is given. Hyperelastic constitutive models were used to describe the material behaviour, and material

incompressibility was accounted for. An active Hill three-element muscle model was used to represent the

muscular tissue of the tongue. The neural stimulus for each muscle group to a priori unknown external forces

was determined through the use of a genetic algorithm-based neural control model.

The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated.

The response of the various muscles of the tongue to the complex loading developed during breathing is de-

termined, with a particular focus being placed to that of the genioglossus. It is demonstrated that, when

a time-dependent loading is applied to the tongue, the neural model is able to control the position of the

tongue and produce a physiologically realistic response for the genioglossus. A comparison is then made to

the response determined under quasi-static conditions using the pressure distribution extracted from com-

putational fluid-dynamics results. An analytical model describing the time-dependent response of the com-

ponents of the tongue musculature most active during oral breathing is developed and validated. It is then

modified to simulate the activity of the tongue during sleep and under conditions relating to various possible

neural and physiological pathologies. The retroglossal movement of the tongue resulting from the patholo-

gies is quantified and their role in the potential to induce airway collapse is discussed.
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Muscle abbreviations

DG Digastric

GG Genioglossus

GGa Genioglossus, anterior component

GGm Genioglossus, medial component
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HG Hyoglossus
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LVP Levator veli palatini
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GLOSSARY

General terminology

a priori Pertaining to something that is known in advance.

Coanda effect A flow effect describing the tendency of a moving stream of fluid in the near vicinity of

a surface to deviate towards that surface.

FFMR Abbreviation for fraction of full muscle response. Related to the muscle activation, this

quantity describes how close to a state of tetany a muscle is.

mask A collection of pixels or voxels defined using manual or automatic processes.

Re Abbreviation for Reynold’s number. A dimensionless number describing the ratio of

inertial to viscous forces in a fluid. It can be used to infer the state of fluid flow, namely

whether it is laminar, transitional or fully turbulent.

SMP Abbreviation for shared memory processor. A computer architecture that utilises a

single, common memory structure between multiple processors or processor cores.

voxel The three-dimensional equivalent of a pixel.

Medical terminology

in vivo Within in a living organism.
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MEDICAL TERMINOLOGY

anterior An anatomical orientation implying “forwards” or towards the frontal profile. In offi-

cial anatomical nomenclature it is used with reference to the ventral or belly surface of

the body.

atonia Deficient muscle tonicity.

ATP Abbreviation for adenosine triphosphate. An important chemical compound which

forms the basis of the metabolic process by providing energy to cells.

axial Of, or pertaining to, the long axis of a structure or part.

BMI Abbreviation for body mass index. A standard measure of risks associated with over-

weight in adults. A first-approximation of a subject’s weight status made by dividing

their weight (in kg) by the square of their height (in m).

CNS Abbreviation for central nervous system. The component of the nervous system re-

sponsible for co-ordination of bodily activities and processing and integration of sen-

sory information.

coronal An anatomical plane parallel to the long axis of the body and perpendicular to the axial

plane. Also known as the frontal plane.

CPAP Abbreviation for continuous positive airway pressure. A non-invasive medical tech-

nique used to treat sleep-disordered breathing by actively increasing the oropharyn-

geal pressure during inspiration thereby increasing airflow to the lungs; also jargon for

the medical apparatus used to accomplish this process..

CT Abbreviation for computerised tomography (also CAT – computed axial tomography

– scan). A medical imaging technique which uses multiple X-ray images to produce a

three-dimensional view of a region of tissue.

distal An anatomical orientation describing an object further from a specified point.

DTI Abbreviation for diffusion tensor imaging. A medical imaging technique that tracks

the movement of water molecules within tissues.

EMG Abbreviation for electromyogram. A medical device used to monitor skeletal muscle

activity by measuring electrical potential within the tissue.

hypercapnia Excess of the carbon-dioxide content of the blood.

hypoxia A reduction of the oxygen content of the blood reaching the tissues.

incline The act or measurement taken from a supine to an upright orientation.

inferior An anatomical orientation implying “below” or towards the foot end.

isometric A term describing muscle contraction during which the length of the contracting mus-

cle remains constant.
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MEDICAL TERMINOLOGY

isotonic A term describing muscle contraction during which the force of contraction remains

constant.

lateral An anatomical orientation implying “outside” or away from the median plane or an-

teroposterior line of the body; it also refers to the orientation coinciding with lying on

the side.

MAD Abbreviation for mandibular advancement device. A medical device used to increase

airway patency by physically repositioning the mandible, and therefore the tongue,

forward.

medial An anatomical orientation implying “the middle” or closer to the median plane of the

midline of the body or structure.

midsagittal An anatomical plane parallel to the long axis of the body.

MRI Abbreviation for magnetic resonance imaging. A medical imaging technique used to

produce a three-dimensional view of a region of tissue by measuring magnetic fields

generated by magnetisation of atomic nuclei.

NREM Abbreviation for non-rapid eye movement. A sleep-state in which brain activity is

reduced and muscle atonia occurs. The later, regenerative stages of the sleep cycle are

in NREM stages.

OSA Abbreviation for obstructive sleep apnoea (syndrome). A multi-causal sleep disorder

resulting from the loss of patency in the oropharynx.

patency A description of the airway related to its dilation and the ease of movement of air within

it. A loss of patency implies constriction or closure of a portion the airway.

pennation Having a structure like that of a feather; the angle between the direction of the muscle

fibres and the line of action of the muscle.

PEPT Abbreviation for positron emission particle tracking. An industrial and medical imag-

ing device, adapted from positron emission tomography, used to track the position of

a radioactive marker undergoing beta decay.

posterior An official anatomical nomenclature used to imply “backwards” or towards the rear or

dorsal profile.

prone The orientation that coincides with lying on the stomach or ventral surface.

proprioception A sense that provides spatial awareness of the position and orientation of the body’s

parts relative to one another.

proximal An anatomical orientation describing an object closer to a specified point.

recline The activity or measurement taken from an upright to a supine orientation.
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MATHEMATICAL TERMINOLOGY

REM Abbreviation for rapid eye movement. A sleep-state near arousal in which dreaming

occurs.

sagittal Any anteroposterior plane parallel to the midsagittal plane.

SDB Abbreviation for sleep-disordered breathing. A broad classification of breathing-related

disorders and syndromes that occur primarily during sleep.

superior An anatomical orientation implying “above” or towards the head end.

supine The orientation that coincides with lying on the back or dorsal surface.

tetany A physiological state with activation and subsequent contraction of muscular tissue; a

term most commonly associated with pathophysiology.

transverse Situated at right angles to the long axis of the body or a part.

upright The orientation that coincides with the normal vertical positioning or posture.

Mathematical terminology

deterministic Given an identical set of starting parameters, the result of an operation or algorithm

will be entirely repeatable.

major symmetry For a fourth-order tensor that possesses major symmetry, the following can be said of

its components: AABCD “ ACDAB .

metaheuristic A category of typically non-deterministic algorithms that explore a given search-space

to find a near-optimal solution to a given problem.

minor symmetry For a fourth-order tensor that possesses minor symmetries, the following can be said

of its components: AABCD “ ABACD “ AABDC .

PDS Abbreviation for positive-definite symmetric; a symmetric tensor that has all positive

eigenvalues.

RMSE Abbreviation for root mean squared error; defined as RMSE “

c
1

n

nř
px ´ x̄q2.
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NOMENCLATURE

Greek

α Activation level

θ Angle of incline, measured from the

horizontal

γ Orientation angle cosine

¯̄λ Volume-weighted average stretch

σ Cauchy stress tensor

τ Kirchhoff stress tensor

δ Kronecker delta

ρ Density

Π Energy functional

γ Shear strain

κ Bulk modulus

Λ Lagrange multiplier

ϕ Motion

ψ Strain-energy per unit volume

λ Stretch

τF Activation level fall time

θ Dilatation

τR Activation level rise time

ε True strain

φ Volume fraction

ν Poisson’s ratio

Latin

a Current area

A Reference area

a Current area vector

A Reference area vector

b Left Cauchy-Green deformation tensor

B Material shape function gradient

‹

B Spatial shape function gradient

b Body force vector

C Right Cauchy-Green deformation tensor

C Second-order elastic tangent

d Rate-of-strain tensor

E Green-Lagrange strain tensor

e Local basis vector

F Deformation gradient
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f Force vector

g Gravitational vector

I Second-order identity tensor

l Velocity gradient

N Reference normal vector

n Current normal vector

P First Piola-Kirchhoff stress tensor

P Point; coordinate position

R Rotation tensor

S Second Piola-Kirchhoff stress tensor

t Traction vector

U Material stretch tensor

u Displacement vector

V Spatial stretch tensor

v Velocity vector

X Material point

x Spatial point

cL Muscle stretch cut-off parameter

fL
c Contractile element length relationship

fV
c Contractile element velocity relationship

fp Parallel element length relationship

fs Series element length relationship

J Volumetric Jacobian

L Length

m Mass

M Muscle (global quantity)

u Neural excitation

p Pressure

‹
x Goal position

t Time

t˚ Non-dimensional time

Tmax
0 Peak nominal isometric muscle stress

T s
0 Peak muscle stress scaling factor

v Current volume

V Reference volume

w Optimisation algorithm weight

W Work

E Small strain Young’s modulus

G Small strain shear modulus

K Tangent stiffness

R Residual

T Nominal stress

N Shape function

Operators, calligraphic and blackboard symbols

A Assembly operator

C Spatial fourth-order elasticity tensor

H Material fourth-order elasticity tensor

I Fourth-order identity tensor

P Spatial deviator tensor

χ Configuration transformation map

B Body

sb Non-standard dyadic tensor product
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1. INTRODUCTION

Sleep is an important part of our daily routine and plays a vital role in human’s ability to perform effectively.

From inception to awakening, the brain and muscle activity undergoes various changes as one moves be-

tween different states of sleep. In addition to the many critical cellular metabolic activities that occur during

sleep, the reversal of fatigue and general physical and mental revitalisation may only occur when a state of

deep-sleep is attained. Disruptions in sleep patterns lead to less time being spent in a state of deep-sleep, and

thus a degradation in the quality of sleep.

A multitude of causes may result in interruptions to healthy sleep patterns. Excluding the obvious external

environmental influences, short- and long-term physiological and anatomical changes may have an increas-

ing role to play in this regard. During non-rapid eye movement (NREM) sleep, brain activity is reduced and

a decrease in general muscle tone, atonia, occurs [308, 294]. The rapid eye movement (REM) state is, amongst

other things, characterised by a temporary muscle paralysis initiated to prevent involuntary movement. Due

to the process of aging, changing levels of fitness and general well-being, the human anatomy and physiol-

ogy undergo numerous changes. Such changes include the modification of chemical and hormonal levels,

general muscle tone, and quantity and distribution of adipose tissue. All of these influence bodily functions

on both a conscious and unconscious level during the various stages of sleep.

Of the many sleep-related disorders, the understanding of those associated with breathing has become more

important. Obstructive sleep apnoea (OSA) in particular is a syndrome of increasing prevalence in modern

society, with the affliction presenting in approximately 4 ´ 9% of the adult male population of the United

States of America1 [164, 238, 73], for example. Characterised by a partial or complete reduction in airway

patency, the collapse of the upper airway leads to brief or, in the case of severe OSA, extended periods of

hypoxia. During the process of restoring airway patency, the individual often performs violent movements.

Collectively, these lead to a reduction in the quality of sleep. Although it severely reduces the quality of life

of the individual, it is not necessarily life-threatening in itself2. However, associated with this disorder are

many secondary effects which may have more severe direct consequences.

Many treatments have been evaluated and used to correct the syndrome but the success of these treatments,

measured as an extended removal of symptoms associated with the disorder, is mixed. However, such treat-

ments can only be utilised after a clinical diagnosis of the disorder is made. This requires a degree of inter-

vention on the individual’s behalf as the main presentation is non-restorative sleep and snoring of which the

1 Up to 40% of all men suffer from a sleep-related disorder [294, 53]. It has been estimated that nearly a quarter of all American men

experience some type of sleep-related breathing disorder which negatively impacts on quality of life [164].
2 In rare instances, such as the occasion documented by Pearce and Saunders [209], it has been listed as the primary cause of death.
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sufferer is unaware. A secondary person would have to draw attention to the problem and an individualised

sleep study needs to be performed [53]. During a nocturnal polysomnogram, the number of apnoeic events

and their effect on the body are measured. Due to the lack of public knowledge of the disorder and of the

likely cause of their daytime tiredness, many live with the affliction undiagnosed and untreated. The need

for complete understanding the disorder, its risk factors and the development a comprehensive and effective

treatment has never been more relevant.

1.1 A description of OSA

OSA is a general category of disorders related to upper airway occlusion of varying location, cause and

nature [168]. A simple description given by Avrahami et al. [7] for the cause of OSA is the narrowing of

the oropharynx, which may occur in the region of the soft palate and uvula, or the base of the tongue. This

region, that being the primary site of collapse, is highlighted in figure 1.1.

Figure 1.1: The respiratory system and area of focus for OSA research. Image sourced from Agur and Dalley

[2, p. 28].

However, the underlying aetiology and pathophysiology, that is the root cause of the disorder, is complex and

differs significantly between individuals. The dynamics of both neuromuscular control of the upper airway

and airflow are not fully understood, and are currently the focus of significant research. Supplementing the

basic information presented below are detailed reviews and discussions of the pathogenesis of OSA provided

by Malhotra and White [164], Ryan and Bradley [238], White [308], Davidson [53], Waite [294], Fogel et al.

[73], Ayappa and Rapoport [8].

Two main variations of sleep apnoea are considered by clinicians, namely obstructive and central / complex

apnoea. While OSA is a result of the presence of an airway obstruction alone, complex apnoea has an ad-

ditional component related to the dysfunction of the respiratory control system [276]. The primary result of

an apnoeic spell is a reduction in the delivery of oxygen to the lungs, leading to hypoxia and hypercapnia.

Successive episodes of apnoea cause the blood chemistry to change, with further oxygen desaturation and
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an increase in carbon dioxide levels. This in turn leads to temporary sleep arousal as a corrective mechanism

to the event. Increased respiratory effort and hyperventilation which may occur during arousal may lead to

further destabilisation of the airway and the promotion of further apnoeas. [308]

Sleep-disordered breathing (SDB) is commonly a result of both neuromuscular and anatomical abnormalities

in the human upper airway (HUA) [227]. The central respiratory system controls the dilators, but they re-

act to multiple stimuli including the intrapharyngeal pressure, mechanoreceptors, blood chemistry and lung

volume [238]. In healthy individuals, the airway muscles respond by a reflexive mechanism in the order of

milliseconds to changing airway conditions during wakefulness [164, 238, 73]. OSA in particular is associated

with a reduction in motor control of the oropharyngeal dilators, leading to sub-optimal muscle responsive-

ness to changing airway conditions [308, 164]. Due to the lack of anatomical support of the muscles in the

upper airway3, it is particularly vulnerable to negative effects of diminishing muscle activity [164, 73]. The

loss of patency thus primarily occurs at the end of expiration or beginning of inspiration [238]. In most pa-

tients, the collapse of the airway generally begins at the retropalatal and oropharyngeal regions, followed

by the base of the tongue and then hypopharynx [238]; these three sites provide classification to the form of

OSA [294]. However, the overall characteristics of the presentation of the disorder differ between individuals

[308]. A summary of the speculated sequence of events leading to one form of upper airway occlusion in

obese patients is provided by Remmers et al. [231]:

1. The narrowing of the pharynx, aided by the compromise of upper airway muscle control, leads to a

decrease in pharyngeal pressure below a critical value and subsequent pharyngeal collapse (loss of

patency).

2. Reduction in airflow initiates involuntary chemical stimulation of the dilator muscles. Activity in the

airway dilators, as well as other inspiratory muscles, increases but their action remains insufficient to

overcome the low airway pressures.

3. Voluntary stimulation of the airway dilators results in the removal of the source of the occlusion and

airway patency is restored.

Alternative hypotheses for the cause of OSA include timing irregularities between the oropharyngeal dilators

and the diaphragm [164, 308] and the associated ventilatory instability [73], fatigue or injury of the dilators

[164], fluid surface tension effects related to the airway mucosa [238] and chemistry related to neurotransmit-

ters [238]. From a physiological perspective, the conclusion from a study conducted by BuSha et al. [31] was

that the fundamental physiological behaviour of the muscles in OSA sufferers changes.

Further, the muscles respond differently during sleep and wakeful states. Experiments have determined

that those inflicted with OSA require greater muscle activity during wakeful inspiration to overcome the

lower pressures associated with narrower airways. The adaptive mechanisms of the neural system during

periods of consciousness are able to accommodate these requirements, even for those that exhibit the worst

characteristics associated with OSA. However, specifically during sleep, tonic activation of the dilators is not

maintained. [164, 238, 73]

3 The evolutionary cause for this is speculated to be related to the development of the capability of speech and the associated dual-use

of the pharynx during respiration and eating, thus requiring a balance of flexibility and compliance for swallowing with rigidity to

resist low airway pressures developed during inspiration.
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Cause, effect and correction

It is well understood that the ultimate cause of pharyngeal collapse is the development of low airway pres-

sures that the airway is not able to resist. However, there are a multitude of factors that directly and indirectly

influence the susceptibility to the loss of airway patency. One environmental factor is the posture of the head

and neck [205, 122, 269, 15, 8, 18, 268]. Studies have demonstrated that sleeping in the supine position leads

to a more collapsible airway, mainly due to the change in muscle response as the posture is altered.

It is important at this point to consider that, even though the gross anatomical features of the human body

remain largely the same between people, each person has their own individual physical characteristics that

may contribute to the likelihood of them presenting with OSA. Many cephalometric studies have been per-

formed to determine what these characteristics are and the degree to which they increase the chances of

having SDB. There exists a strong correlation between length of the airway [249, 206, 166], neck circumfer-

ence [294] and OSA. The orofacial skeletal structure [238, 308, 73, 125] also plays a role in this regard, and

it has been observed that people with narrower upper airways and/or posteriorly-positioned maxillae and

mandibles [76] are predisposed to the condition. These general features have been linked to genetics and the

inheritance of anatomical traits [308, 294]. The general morphology of the oropharynx has also been studied

[76, 270], and correlation between the occurrence of OSA and tongue size [73, 294, 248], the positioning of

the hyoid bone [294] and the distribution of adipose tissue [164, 238, 73, 248] has been found. Linked to the

latter is the subject’s body mass index (BMI) [125, 173] and general obesity4 [33, 8]. The presence of nasal

obstructions [238, 294, 227, 236, 75] and increased nasal resistance [250] has been correlated to lower airway

pressures or may possibly lead to the use of oral inspiration during sleep [174].

Linked to the issues of the gross anatomy are those of a physiological nature. Age [291, 173, 270], gender

(which can be linked to airway length) and ethnicity [164, 238, 8] all have a role to play in this regard. Each

is related to anatomical structure, hormones [8] and distribution of adipose tissue. Furthermore, studies

show that muscle strength reduces with age [219]. In terms of blood chemistry, hypoxia leads to hypercapnia

and other chemical changes, affecting the response of the muscles [261, 3, 8]. Neuromuscular abnormalities

[227], including loss of coordination between upper airway dilators and diaphragm [308, 164] and a decrease

in muscle tone [111, 3, 231, 8], may contribute to airway collapse. However, there is also is evidence that

plasticity in the dilator muscles’ functioning exists and that this may be altered due to OSA [31]. Muscular

compensation has been viewed in patients with a strong disposition for airway collapse [138]. Fatigue and

muscle recovery are also thought to contribute to the syndrome [25]. Furthermore, the response of the ge-

nioglossus (GG) changes measurably between wakeful and sleep states. It has been observed in OSA patients

that the GG remains functional during wakefulness to prevent airway collapse [18], thus linking neuromus-

cular dysfunction to the sleep state as well.

The consequences of the disorder extend far beyond the direct effects airway collapse, namely to the devel-

opment of hypoxia and hypercapnia. The most common association with the syndrome is snoring5 [49], an

affliction which affects almost all those having OSA. Narcolepsy and daytime sleepiness [294, 53] are preva-

lent, the direct result of which is an increase in occupational and vehicular accidents [294, 164, 53]. More

serious medical conditions including hypertension, increased cardiac risk [30, 32, 294, 53] and strokes [164],

all due to the increased stress on the body, have been linked to the condition.

Many forms of treatment have been tested for OSA and SDB in general. Surgical intervention [294, 181, 134,
4 However, 30% of patients with OSA are not obese [164], but do present with narrower airways [238].
5 It has been estimated that 10% of the population of snorers have one form of OSA [110].
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162] is a common, and offers options that include tonsillectomy and adenoidectomy (which does not have

a high rate of success in adults) [53], uvulopalatopharyngoplasty (also not particularly successful) [294] and

maxillomandibular advancement [294]. Orthodontic devices [43, 200, 181, 239], which temporarily simulate

the effect of maxillomandibular advancement through clamping and advancing the tongue, have been shown

to increase the cross-sectional area (CSA) of the velopharynx. Manual electrical stimulation of the tongue

[109, 126], used to initiate contraction of the airway dilators, has been used with mixed success. Devices,

such as continuous positive airway pressure (CPAP) machines [294, 53, 30, 73, 137], have been developed to

actively react to the occurrence of apnoeic spells by increasing the pressure of the airway. They have been

shown to be extremely good at preventing the onset of OSA, but issues of compliance [164] render these

machines only moderately successful overall.

1.2 Challenges involved in research of sleep disorders

One of the greatest challenges in both experimental and computational research of the oropharynx and the

tongue is its multiple levels of complexity. The geometry of the oropharynx and tongue is highly complex,

and the surrounding anatomy is intricate and greatly influences its movement. Some of the macroscopic

features of the anatomy are very fine and difficult to incorporate into models. Furthermore, the histology of

the tongue musculature is incredibly complex and difficult to describe. The correct functioning of the tongue

relies heavily on this histology, and so it is important to have a good basis of understanding of its functioning

and the interplay between muscles. It is the coordination of several muscle groups that maintains control of

the movement of the tongue; this is an incredibly challenging aspect of tongue functioning to quantify.

The issue of complexity of muscle coordination has been succinctly addressed in an editorial penned by

Sokoloff [256]. Though studies have focused on the action of a number of the extrinsic muscles, few have

been performed to determine the activity of the intrinsic ones, and even less the co-activity of several mus-

cles in unison. It has been hypothesised that both intrinsic and extrinsic muscles in the tongue must be

co-active to facilitate its movement and functioning, and that they do not necessarily act discretely. The ac-

tion of multiple muscles is required to support and control the tongue motion, and these controlling units

change during inspiration and expiration. Movement also influences muscle fibre orientation and its under-

lying physiological construction, thereby changing the mechanical effect. The effect of an individual muscle

unit is thus affected by that of all of the other units. With all of this complexity, the basis for the selection

of active tongue motor units by the neurological system remains unknown. One possibility is that multiple

muscle units (subsets of the muscles themselves) are recruited simultaneously in order to perform move-

ments; another is that properties of the muscle units (such as location) are the basis for selection. The reason

is simply unknown at this time.

Apart from that of the tongue’s neurological control, a number of open questions remain to be addressed.

From a clinical perspective, it is strongly believed that diminishing activity in the airway dilators during sleep

is the primary cause of OSA [308]. It is noted that very little work has been done to understand the influence

of the central nervous system (CNS) in this regard [308] and how this may be altered under changing blood

chemistry [168]. Furthermore, the exact nature of the role of obesity in the onset of OSA is unclear [66, 227].

This plays out as subtleties in the treatment of the disorder, ergo that CPAP machines require reconfiguration

after weight loss [168]. Overall, it remains to be seen whether the upper airway can be stabilised without an

unstable ventilation control mechanism, such as that which may be yielded by treatment with CPAP [168].
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Advanced experimental methods used to understand tongue functioning

The gross anatomy of the tongue is well understood and documented. However, some details regarding the

structure and movement of this organ are only now being realised with the advent of modern technologies.

Both experimental and computational methods are vital to the future of upper airway research.

Being as highly mobile as it is, large deformation and therefore strains are present in the tissues of the tongue.

Dynamic magnetic resonance imaging (MRI) provides researchers with the ability to observe in vivo in-plane

tongue movements. The strain attained during dynamic motion is able to be experimentally quantified using

tagged MRI and can form a basis for experimental validation of finite element analysis (FEA) models such as

the one presented in this work. On a histological note, diffusion tensor imaging (DTI) provides a method for

mapping the distribution and direction of muscles fibres in the tongue in vivo, which can also provide data

for the construction of computational models. A sample of results of each technique is shown in figure 1.2.

Positron emission particle tracking (PEPT) is an emerging tool that allows for the tracking of individual

radio-active tracer particles in space, which may be useful for visualising airflow in airway and conceptually

tracking surface motion and deformations.

(a) Tagged MRI of human tongue depicting strain in the

anterior-posterior direction. Image sourced from Na-

padow et al. [190].

(b) Visualisation of constituent muscle groups using DTI.

Image sourced from Gaige et al. [80].

Figure 1.2: Examples of modern technologies used to study tongue mechanics and histology

Understanding the active tissue response and behaviour is also crucial to the development of computer mod-

els. Above the standard indentation tests used to understand passive tissue behaviour (see appendix D.3.1),

magnetic resonance elastography [39] can provide in vivo data of the viscoelastic properties of the tongue.

Furthermore, electromyogram (EMG) (discussed further in section 2.6), which provides a recording of elec-

trical signals sent to the muscles, gives insight into the active behaviour of muscles.

1.3 Goals of this work

In this work, we consider OSA restricted to the region of the upper oropharynx, and therefore primarily

a consequence of movement of the tongue. A complete experimental dataset of muscle activation patterns
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during breathing has not yet been described. Under very controlled environments, EMG data has been

experimentally obtained for a principle few muscles, while the influences (if any) of the remaining muscles

have been left unexplored. This is unsurprising considering the complex physiology and micro-histology of

the upper airway. Furthermore, there are numerous physical and environmental factors that heavily influence

this data. Although we understand that the GG long since has been experimentally identified as the main

airway dilator in the tongue, it has not yet been fully described or quantified which factors influence its

functioning. Furthermore, the roles of the other tongue muscles during breathing have not been extensively

discussed.

The primary purpose of this work is to determine the outcome of reduced muscle activity in the main airway

dilators, thereby simulating neural depression and the loss of reflexive mechanisms that both occur during

sleep. In this way, it is desirable that one qualitatively describe the effect of diminished tongue muscle

responsiveness and comment on its likely contribution to the reduction in airway patency.

In order to achieve this goal, several broader steps are to be taken. A physiologically accurate model of

the tissues of the human upper airway should first be created. Such a model needs to incorporate accurate

macro- and micro-scale models of the airway physiology. Representative models for both the passive and

neurologically active muscle tissue response are to be developed, along with sufficiently representative mod-

els of other tissues also relevant to the problem geometry. The model is to be validated in terms of its ability

to reproduce the physiologically correct motions of the tongue. A mechanism to determine muscle responses

to resist complex or a priori unknown load distributions on the tongue needs to be developed. Using this, an

examination of the effect of environmental factors on both the passive tissues and the active muscle response

is to be conducted. Simultaneously, an investigation of the roles of the different muscles in the tongue, with

an emphasis on the GG, in response to breathing is required to be performed. Once there is an understand-

ing of the response of the tongue to the various external influences, some methodology for translating these

relationships to one that is representative of its sleep-state response is to be formulated.

Towards accomplishing the primary goals of this work, several secondary tasks are to be considered. The

loading distributions assumed to be present on the tongue should be validated. To this end, it is desirable

to compare the results obtained from pressure distributions extracted from steady computational fluid dy-

namics (CFD) results to idealised descriptions of airway pressure fields. At the same time, it will be possible

to quantify the difference between static and dynamic models of the tongue and the response of its muscles

under these temporal assumptions. Furthermore, comparing the case of nasal to oral respiration is likely

to provide insights into why oral respiration, particularly inspiration, during sleep plays a large role in the

onset of apnoeic events. Insights towards producing simpler and more computationally efficient models to

understand the OSA condition are to be presented and discussed.

1.4 Outline of this document

This thesis is decomposed into two main parts. In part I, a presentation of the underlying theory and de-

velopment of the model is given. Part II is devoted to the presentation and discussion of the computational

geometry and simulation results. Finally, further information on topics discussed in the previous two parts

is provided in the Appendices.

The document addresses the concepts and theory relevant to the construction of a computational model of

the human upper airway in the following order:
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In chapter 2, the anatomy of the upper airway and the physiology of skeletal muscles are presented with a

particular focus on the tongue. Mathematical details related to the field of continuum mechanics are subse-

quently discussed in chapter 3. Chapter 4 details the specific finite element (FE) implementation of nonlinear

elastic media and some numerical algorithms used in this work. The description of energy functions that

may be used to model general nonlinear, transversely isotropic materials are shown in chapter 5. Chapter 6

then provides specific information regarding the mathematical description and numerical implementation of

active skeletal muscle. A novel mechanism to introduce active, dynamic control to the tongue is then outlined

in chapter 7.

Now that the underlying theory and implementation has been detailed, the construction of the geometry for

the solid model of the tongue and surrounding soft tissues is presented in chapter 8, alongside a prelimi-

nary fluid model that is used in validation studies. Numerous studies are then performed using the tongue

model and an assumed pressure distribution. Firstly, the passive response of the tongue to gravitational and

pressure loading is conducted in chapter 9. Its active response and the effect of the contraction of individ-

ual muscles on the underlying histology is examined in chapter 10. These two studies are followed by an

optimisation study and evaluation of the performance of the neural control model under dynamic loading

conditions, which is presented in chapter 11. Basic, steady state fluid-flow studies using a matching geometry

to the solid model are presented in chapter 12. Finally, the results of the dynamic studies and static results

obtained from pressure-data extracted from the fluid-flow study are compared in chapter 13. Further work

is presented in order to translate these sets of information into an analytical model that is subsequently used

to analyse the movement of the tongue in conditions of sub-optimal muscle functioning.
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2. ANATOMY AND PHYSIOLOGY

In this chapter, the gross anatomy of the HUA relevant to the OSA condition is presented. Details of the

histology of soft and hard tissue components are given and the basic functioning of the muscles groups is

described.

2.1 Overview of the upper airway

The human airway consists of a number of distinct anatomical regions, namely the oral cavity and orophar-

ynx (which itself is divided into the velopharynx, hypopharynx, retroglossus), the nasal passages and na-

sopharynx, larynx, upper and lower trachea, the bronchial tree, and the lung parenchyma. Each region of

the airway is surrounded by a complex arrangement of tissues with distinct properties and functions, all of

which greatly influences the dynamics of air passing through the airway. This study focuses on the upper

airway, outlined in figure 1.1. For more detailed reference of the general anatomy of the upper airway, fig-

ures 2.1 to 2.4 are provided and are referred to in the following text in which a very brief summary of the

upper airway construction is presented.

2.1.1 Oral cavity

The oral cavity describes that cavernous region of the mouth that houses the tongue. A general orientation of

its anatomy can be view in figures 2.1 and 2.2, and a detailed view of the anatomy its presented in figure 2.3.

The tongue, whose volume occupies the greater part of the oral cavity, is an agile muscular organ that plays

a vital role in speech and swallowing. Its complex physiology is detailed in section 2.2. The tongue has a

number of bony attachments, most important of which are the mandible (inferior) and the hyoid bone (distal),

and as such its movement within the closed oral cavity is restricted.

The other bony structure of the oral cavity is the maxilla. This forms the foundation of the anterior facial

profile and the cheeks, and the hard palate that provides the floor to the nasal passages and the roof to the

oral cavity. The hard palate is the point of attachment of the soft palate (distal) from which arises the uvula.

The oropharynx, situated posterior to the oral cavity, is a soft anatomical structure constituted largely of

muscle.

Externally, the soft tissue components of the cheeks are skin, adipose tissue and muscle (the buccinator).

Internally, sublingual and submandibular glands that generate saliva lie inferior, anterior and lateral to the
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Figure 2.1: Midsagittal section through the upper airway. Image sourced from Agur and Dalley [2, p788].
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Figure 2.2: Coronal section through the oral cavity and nasal cavity (posterior view). Image sourced from

Agur and Dalley [2, p. 694].
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(a) Medial section of tongue

(b) Medial section of epiglottis (c) Coronal section of epiglottis (posterior view)

Figure 2.3: Detailed sections of the anatomy of the oral cavity. Image sourced from Agur and Dalley [2, pp.

669,781,783].
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(a) Muscles of the neck. Visible are some of the muscles of the tongue and hyoid that have

origin outside the tongue body.

(b) Coronal section of the oropharynx (posterior view). The anatomy of the soft palate, as well

as the arrangement of the oropharyngeal constrictors is visible, as are some of the extrinsic

muscles of the tongue and soft palate.

Figure 2.4: Detailed sections of the anatomy of the neck and pharynx. Image sourced from Agur and Dalley [2, pp. 767,771].
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2 ‚ ANATOMY AND PHYSIOLOGY

tongue and buccal glands adjacent to the medial surface of the mandible. Numerous muscles, anatomically

separate from the tongue body, comprise the floor of the oral cavity. The hyoid is a fragile, floating bone

located posterior to the tongue in the floor of the mouth, and vital in speech formation. From the main body

of this bone protrude the greater and lesser processes, giving the hyoid a U-shape. There are a number of

muscles both superior and inferior that are inserted into it and control its position. The epiglottis, a tissue-

covered thin cartilaginous flap, is located at the root of the tongue and posterior to the hyoid. It covers the

entrance to the larynx, functions to prevent the entrance of foreign material into the trachea and plays a

crucial role in swallowing. Located in the anterior region of the fat pad on which the epiglottis is bedded,

posterior to the thyroid membrane, is a bursa.

The throat is a broad colloquial term used to describe that part of the neck that lies in front of the vertebra

and houses these structures plus the trachea, oesophagus and vascular, neurological, lymphatic and muscular

complexes.

2.1.2 Nasal cavity and nasopharynx

There are two nasal passages or canals, each with a meatus, the nostril, opening to the exterior and separated

from each other by a cartilaginous nasal septum. The nasal canals are asymmetrically arranged around the

midsagittal axis. The nostrils lead to the vestibule, posterior to which the canals are divided into a complex

network of channels by mucosa-covered turbinates supported by conchae (the superior, middle and infe-

rior), underlying bony structures of the skull. These structures which project into the nasal space create in

turn three structures or meatuses (the superior, middle and inferior). The general structure of the nasal canals

is illustrated in figure 2.2, although their longitudinal construction is not visible from any of the images pre-

viously presented. A number of important anatomical structures lie in close proximity to the nasal passages;

these include large air-filled cavities (the maxillary and ethmoid sinuses), the orbits and critical vascular and

neurological entities.

2.1.3 Oropharynx

The oropharynx is the region of the airway posterior to the base of the tongue and oral cavity, inferior to

the soft palate and uvula and superior to the epiglottis and larynx. Figure 2.1 illustrates the cross-section

of the region (a transverse view can be seen in Agur and Dalley [2, fig. 7-53]). The pharynx is enclosed by

muscular and glandular tissues of which the tonsils and tonsillar pillars are preeminent. A retropharyngeal

space lies posterior to the pharyngeal constrictor muscles and anterior to vertebrae. Figure 2.4b shows a

posterior view of through the oropharynx, depicting the complex arrangement of the muscles of the palate

and the oropharyngeal constrictors. Lateral to the pharyngeal muscles are a collection of muscles, arteries,

veins and adipose tissue.

The constrictor muscles that line the pharynx are divisible into upper, middle and lower parts and overlap

each other. The inside layer of muscles is longitudinally aligned while the external layer has a circumferential

orientation. As is visible in figure 2.4a, the regions of partition between the pharyngeal constrictors serve as

entry points for other muscles into buccal region the floor of the mouth. Penetrating through the raphae are

muscles of the tongue, such as the stylohyoid (SH) which inserts into the floor of the mouth, and the soft

palate, for example levator veli palatini (LVP) which inserts into its superior surface.
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2.1.4 Laryngopharynx and trachea

The larynx, or glottis, is that region of the airway between the pharynx and trachea in which the vocal appa-

ratus responsible for sound production is located. It is a complex, hollow, mixed cartilaginous and muscular

organ through which air passes with a two-piece cartilage structure; the superior portion is known as the thy-

roid cartilage and inferior part of the inferior structure the cricoid cartilage. The cricoid cartilage is connected

to the first tracheal ring on its posterior surface.

The trachea is the last anatomical entity in the airway before the bronchial tree. It has a number of mu-

cosal layers under which muscle and cartilage are present. Critical are the U-shaped cartilages that maintain

airway patency in this region. These are connected one to the other by ligaments. The opening to the oesoph-

agus, thence the stomach, is located at the level of the inferior part of the epiglottis, posterior to glottis.

2.2 Physiology and histology of the tongue

As with most parts of the human anatomy, the histology of the tongue is quite complex, with important phys-

iological features prevalent at all scales of magnification. In this section, the most important details regarding

the composition of the tongue are surveyed from both a macroscopic and a microscopic perspective.

2.2.1 Macro-histology

Although it may appear to be a single organ and simple in structure, the tongue is a complex, composite

organ comprised of numerous intrinsic and extrinsic interwoven muscle groups supported by intramuscular

tissues and glands. Each muscle plays a specific role in controlling the motion of the tongue, and this confers

on it a propensity for high manoeuvrability. The lack of actual physical restriction of the tongue is remarkable.

Its apex, most of each lateral side, and the superior and posterior surfaces, remain free to move.

The root of the tongue is inhibited however by certain muscles in the floor of the mouth, through attachments

to the mandible and hyoid bone (which itself is free-floating), and groups of muscles that originate from a

point exterior to the oral cavity (in some cases from locations lateral to the nasopharynx). The floor of the

mouth, known as the submandibular triangle, is made up of the mylohyoid (MH), the anterior part of the

digastric (DG), the geniohyoid (GH) and SH. The left and right halves of the MH originate from the mandible

and meet one another near the midsagittal plane and insert into the hyoid. The GH, aligned in the sagittal

plane, extends from the mandible to the body of the hyoid bone. Additionally, there is a small tag of tissue on

the underside of the anterior portion of the tongue blade, the frenulum, that provides an anatomical anchor.

Table 2.1 and figure 2.5 describe the configuration of the component muscles of the tongue and their action.

Each muscle relating to the tongue is able to perform a specific action due to its location in the tongue,

points of origin and insertion and fibre directionality. The muscles are largely placed symmetrically about

the midsagittal line and those that are not on the centreline have an antagonist, allowing lateral movements

to be performed.

For some movements, such as protrusion of the tongue, multiple muscle groups are contracted simultane-

ously to perform the motion that no single muscle could achieve. Figure 2.5 depicts sections of the tongue
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2 ‚ ANATOMY AND PHYSIOLOGY

(a) External anatomy of tongue and its extrinsic muscles. Image sourced from Takemoto [271].

(b) Photograph of internal tongue histology. Image sourced from Abd-el Malek [1].

(c) Details of muscle arrangement within the tongue body. Image sourced from Takemoto [271].

Figure 2.5: The macro-histology of the tongue
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Table 2.1: Muscles of the human tongue and the surrounding tissue

(a) Extrinsic muscles [2, 185]

Muscle Origin Insertion Main action

Genioglossus (GG)a
Superior part of mental Dorsum of tongue and body Depresses tongue; Its posterior part pulls

spine of mandible of hyoid bone tongue anteriorly for protrusion

Hyoglossus (HG)
Body and greater horn of Side and inferior aspect Draws down sides of tongue; Depresses and

hyoid bone of tongue retracts tongue

Styloglossus (SG)b
Styloid process and Side and inferior aspect Retracts tongue and draws it up to create

stylohyoid ligament of tongue a trough for swallowing

Palatoglossus (PG)b
Palatine aponeurosis of

Side of tongue Elevates posterior part of tongue
soft palate

a Act simultaneously to protrude tongue
b Offset from midsagittal line; has a left- and right-hand-side component

(b) Intrinsic muscles: Tongue body [2]

Muscle Origin Insertion Main action

Superior longitudinal (SL)
Submucous fibrous layer Margins of tongue and Curls tip and sides of tongue superiorly

and median fibrous septum mucous membrane and shortens tongue

Inferior longitudinal (IL)b
Root of tongue and body

Apex of tongue
Curls tip of tongue inferiorly and

of hyoid bone shortens tongue

Transversus (TV)a Median fibrous septum
Fibrous tissue at margins

Narrows and elongates the tongue
of tongue

Verticalis (VT)a
Superior surface of Inferior surface of

Flattens and broadens the tongue
borders of tongue boarders of tongue

(c) Intrinsic muscles: Mouth floor; suprahyoid [185, 54, 2]

Muscle Origin Insertion Main action

Digastric (DG)b
Mastoid notch of Digastric fossa on base Raises the hyoid bone and the floor

temporal bone of mandible of the mouth

Geniohyoid (GH)
Back of symphysis Anterior surface of body Raises hyoid and floor of mouth,

menti of hyoid bone widens pharynx

Stylohyoid (SH)b
Posterior surface of

Body of hyoid bone
Raises hyoid and elongates floor

styloid process of mouth

Mylohyoid (MH)
Mylohyoid line

of mandible

Median fibrous tissue (Anterior, Forms floor of mouth; Contraction

medial fibres); Front of the body of raises floor of mouth, hyoid bone

the hyoid bone (posterior fibres) and base of tongue
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and illustrates the geometrically complex description of the tongue and its constituent muscle groups. Fig-

ure 2.5a depicts a tongue specimen with some of the muscles present on the exterior of the tongue body

indicated for clarity. The stylised illustration presented by Takemoto [271] in figure 2.5c is consistent with

anatomical references Agur and Dalley [2], Davies [54] and demonstrates clearly the complex arrangement

of the muscle of the tongue that cannot be easily discerned from photographs and slides. Although they may

appear distinct, it can be seen in figure 2.5b that the muscles in the body of the tongue interweave and that,

even at a macroscopic level, some non-muscular tissue is evident in the tongue. Muscle fibres that constitute

each muscle group are distributed in a non-uniform manner and have directionality that change depending

its location in the tongue.

The genioglossus (GG), which is the focus of much of this work, is a fan-shaped extrinsic muscle of large

volume lying on either side of the median plane. It has its origin on the two superior mental spines of the

mandible and inserts throughout the body of the tongue as far back as the hyoid bone.

2.2.2 Micro-histology

At the length scale of individual muscle fibres, the histology of muscle appears very different to that observed

at the macroscopic level. Depending on where the anatomical section is taken, fibres from different muscle

families with differing densities and orientations are present.

Studies performed by Nashi et al. [191] demonstrate that the local fat fraction varies considerably throughout

the tongue. Figure 2.6 depicts a measured example from the study, which highlights that closer inspection

of the histology is required in order to quantify the proportion of the tongue volume that is made of muscle

fibres.

Figure 2.6: Quantified adipose tissue concentrations at various regions in the tongue. Image sourced from

Nashi et al. [191].

Figure 2.7 shows tissue sections taken of some of the intrinsic muscles of the tongue. The slides demonstrate

that muscle groups that occupy the same region of the anatomy (and which in these examples appear largely

orthogonal to one another) are not segregated, but rather interweave with one another.

Muscle fibres of varying diameter are packed into fascicles around which interstitial connective tissue, adi-

pose and vascular tissue together with collagen, are present. It is reported that throughout the entire body of

the tongue some form of connective or glandular tissue is present in close proximity to muscular tissue [259].
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(a) SL (mostly unidirectional fibres) (b) VT (fibres visible in two planes) (c) TV (fibres visible in three planes)

Figure 2.7: Cross-sections of muscles in middle anterior region of the tongue demonstrating fibre orientations

and difference in interstitial tissue concentrations. All images sourced from Stål et al. [259].

(a) Anterior (b) Medial (c) Posterior

Figure 2.8: Variations in fibre organisation and connective and adipose tissue concentrations at various re-

gions in the tongue. All images sourced from Miller et al. [179].

The cross-sectional slides shown in figure 2.8 indicate that the quantity of adipose and other non-muscular

tissue varies considerably with the site of the sample. Although not quantified in these slides, a visual in-

spection suggests that the ratio of muscular tissue (shown in red) versus other soft tissues (stained blue and

white) is not consistent throughout the tongue.

In the axial sections of the tongue shown in figure 2.9 it appears that the distribution of interstitial tissue is

locally regular, although the concentration of adipose tissue is irregular at the macroscopic level. These sec-

tions through the uni-directionally orientated muscle in the tongue also reveal that packing and distribution

of the muscle fascicles is non-uniform.

2.3 Physiology of the palate

The human palate consists of two parts with distinctly different properties, namely the hard palate and the

soft palate. Their location, form and proximity relative to the tongue and retroglossus can be seen in both

figures 2.1 and 2.4b. The hard palate is a bony structure covered by a thin soft tissue layer. The soft palate,

or velum, extends distally from the hard palate and terminates in the free-hanging uvula. Both are mostly

comprised of glandular tissue, but also includes muscular tissue component. Both palates serve to divide
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(a) Light-micrograph of transverse (pos-

terior). Image sourced from Saigusa

et al. [241].

(b) Stained section of superior longitudi-

nal. Image sourced from Stål et al.

[259].

Figure 2.9: Axial sections of muscles of the tongue.

the oral and nasal cavities and are critical in the processes of swallowing and speech formation. It should be

noted that some of the muscles of the soft palate directly contribute to the functioning and movement of the

tongue. In particular, the palatoglossus (PG) inserts into the side of the tongue and is used to assist in lifting

the posterior region of the tongue.

2.4 Composition and function of non-muscular tissues

The upper airway anatomy is comprised of a multitude of tissues, including bone, cartilage, fatty tissues,

ligaments and tendons. A brief description of the composition of the first three is given here.

Cartilage is a composite material, consisting of fluid-filled cells, intercellular matrix and network of collagen

fibres. The consistency of the cartilage, in terms of the volume comprised by matrix and fibres, depends on

its location within the body. The movement of fluid within the tissue bestows it with viscoelastic qualities.

Cartilage acts as a shock-absorption material, provides lubrication for joints and can also be of structural

significance. The main structural component of the body, bones, are a form of calcified cartilage. At the

macroscopic level, they are a histologically complex structure composed of the dense cortical outer layer

with a porous interior made of trabecular bone. They are brittle, only functioning in the small strain regime

but have an anisotropic and viscoelastic response. [78]

Adipose or fatty tissue is comprised of cells that contain lipids, interspersed with other connective tissues

[163]. The exact nature of the composition of the tissue depends on its site. The resulting collection of tissues

is elastic in nature and serves as a cushioning material, insulator and energy deposit.

2.5 Composition and functioning of skeletal muscle

Skeletal muscle is a striated voluntary muscle that is able to be controlled through somatic motor innervation.

In general, it is made up of three main components, namely the tendon, collagen connective tissue and

striated muscle fibres. Each component is comprised of increasingly complex sub-units, the arrangement

of which has a great effect on the mechanical properties of the muscle unit. The total force that a muscle can
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generate is dependent on a number of factors such as the cross-sectional area of the muscle, the number of

muscle fibres implicated in the contraction, the length and contraction rate of the muscle and the manner

in which the muscle is stimulated. In order to better understand the the physiology of skeletal muscle, the

composition of muscle and its basic sub-units are first discussed.

2.5.1 Composition of skeletal muscle

The basic structure of skeletal muscle is depicted in figure 2.10.

BONE TENDON MUSCLE FIBRE

PERIMYSIUM
EPIMYSIUM

FASCICLE

(a) Muscle components

MUSCLE FIBRE MYOFIBRIL

SARCOMERE

(b) Muscle fibre components

Figure 2.10: Structure of skeletal muscle

Skeletal muscle is attached to its bony origin by means of a tendon. The muscle is divided into several sub-

units, the largest of which is a fascicle. Each fascicle, which is composed of a parallel collection of muscle

fibres, is surrounded by a layer of connective tissue known as the perimysium. The collection of fascicles that

compose each muscle are encapsulated by the epimysium. Pennation, which describes the angle of attach-

ment of the fascicles to the tendon, varies depending on the muscle. In a muscle such as the rectus femoralis

the pennation angle is significant; however, the muscles of the tongue and the upper airway have no penna-

tion [54].

The fibres that make up skeletal muscle are not uniform in their properties. Type I fibres are known as

slow-twitch fibres, taking of the order of tenths of a second to reach a state of maximum contraction, while

type II fibres are fast-twitch taking milliseconds to produce maximum tension. These fibre types also have

different contractile strengths, fatigue and metabolic rates. Both of these fibre types are present in the tongue,

as observed in figure 2.11. [74]

Each muscle fibre, as shown in figure 2.10b, contains several myofibrils with a diameter of approximately 1µm

that run the length of the muscle fibre, and the remaining space is filled by sarcoplasm. It is the arrangement

of the myofibrils and muscle fibres that give the muscle its striated appearance. The myofibrils are subdivided

into myofilaments, which contain a specific arrangement of sarcomeres. Each myofilament is 2.5µm long,

dependant on the force in- and excitation state of- the muscle. Sarcomeres are arranged both serially and in

parallel to make up each myofibril. The is the action of the myofilaments that cause active contraction of the

muscle unit. [78, 74]
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Figure 2.11: Fast and slow action muscle fibres depicted in a stained tongue section from undeclared region.

Each fascicle in this image is of the order of 20 ´ 80µm in diameter. Image sourced from Stål

et al. [259].

2.5.1.1 Composition of the sarcomere

Figure 2.12 illustrates the arrangement of sarcomeres in a muscle and provides a representative drawing

of the structure of a single sarcomere. At the end of each sarcomere is a Z-disc. Three protein filaments

make up the composition of the myofilaments. Titin filaments serve to anchor myosin filaments to the Z-

disc. Titin filaments are elastic, and are considered to contribute to the elastic recoil of the muscle during

relaxation. Protruding from each end of the myosin are numerous 19nm long cross-bridges. Parallel to the

titin and myosin filaments are actin filaments which serve as attachment points for the cross-bridges. Actin

and myosin have diameters of approximately 5nm and 12nm respectively. The arrangement of actin and

myosin filaments appears as a hexagonal pattern if viewed in cross-section through the myofibre. [78, 74]

(a) Electron microscope image of glycerinated chick pectoral mus-

cle. Multiple sarcomeres are visible, with the Z-discs. Image

sourced from Hagopian [95].

ACTIN MYOSIN

CROSS-BRIDGE

TITIN

SARCOMERE

Z-DISC A-BAND I-BAND

(b) Sarcomere components

Figure 2.12: Electron micrograph of skeletal muscle sarcomeres. In figure 2.12a, the approximate lengths of

the I- and A-bands are 1µm and 1.5µm respectively and the overall length of the sarcomere is

approximately 2.2µm.

In figure 2.12a, a number of distinct histological features of the horizontally aligned collection of sarcomeres

are visible. The dark bands on either side of the image are Z-discs. The large grey band in the centre of the

image, known as the A-band, is the region where the actin and myosin filaments overlap and interact by the

action of the cross-bridges. Central to the figure is a narrow white band, the H-band, indicating the extents of

the actin filaments that extend from either Z-disc. The white bands that extrude from either side of the Z-disc

are the I-band, and indicate the region that has actin filaments but no myosin.
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2.5.2 Functioning of skeletal muscle

When at rest, skeletal muscle displays viscoelastic properties. This is not an entirely passive state for in this

resting state the muscle maintains its tone as a consequence of continued stimulation by motor neurones

(anterior horn cells). The resting stress determines the resting length of a muscle, and does not affect the

muscle mechanics in any other way. The total contractile force of the activated muscle is dependent on the

arrangement of the muscle fibres with respect to the overall line of action of the muscle. [78]

2.5.2.1 Histological process of muscle contraction

Muscle contraction, from the viewpoint of the changes occurring within each sarcomere, is presently best

described by the sliding filament theory of contraction. During contraction, neither the actin nor myosin

filaments change in length. The myosin slides over the actin into the I-band, an open region of space [74].

Contraction therefore results in the reduction in length of the I- and H- bands, while muscle relaxation will

result in their elongation. Contraction can occur as long as there is free space in the I-band to permit this - at

this point, there is a slight overlap of actin filaments. When the sarcomere is in a state of extension (due to

the influence of an external entity), the I-band may open up to the point where there is no A-band present.

Since this indicates that there is no overlap of the actin and myosin filaments, no cross-bridges between these

proteins can be made and active contraction is not possible. Ultimately, the shortening of the sarcomeres

results in the shortening of the myofibrils and therefore the myofibres that constitute a particular region of

the muscle.

Contraction occurs through the action of the cross-bridges, described in the cross-bridge theory. A cross-

bridge is the collective unit produced when a myosin head attaches to a binding site on an actin filament.

The sliding action of the actin filament over the myosin filament is produced through the action of the cross-

bridges, and the intensity of the contraction is proportional to the number of active cross-bridges. During

a single contraction cycle of the cross-bridges, the muscle is shortened by approximately 1% of its resting

length. Many cycles occur to produce an eventual shortening of up to 60% of the muscle’s original length.

[74]

A number of complex chemical processes are involved in the functioning of the cross-bridges, causing the

eventual conversion of chemical energy into mechanical energy. Chemical energy in the form of adenosine

triphosphate (ATP) is required to control the creation and breakage of cross-bridges. Once a cross-bridge

has been created and a chemical transformation taken place, the power-stroke of the myosin-complex is pro-

duced, resulting in the mechanical deformation of the myosin and the displacement of the myosin filament

relative to the actin.

2.5.2.2 Sarcomere force-length relationship

The force-length relationship of a sarcomere has been experimentally determined to take the form shown in

figure 2.13. At the ideal resting length for sarcomeres, the actin and myosin filaments are aligned such that

there are a maximum number of cross-bridges exposed to potential binding sites. This means that, upon

activation, an optimal number of cross-bridges can be formed to produce the maximal contractile force. This

ideal resting length is maintained during passive stretching by reflex contractions. [74]
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Figure 2.13: Sarcomere force-length relationship [78]

It is also shown that the maximal performance of the muscle deteriorates as the length of the sarcomere

deviates from the ideal length. The mechanism governing the performance reduction differs for elongation

and contraction. As the distance between the Z-discs of the sarcomere increases, the overlap between the

actin and myosin filaments is reduced and the number of myosin-heads exposed to binding sites on the actin

filament decreases. Under conditions of extreme elongation, the myosin will no longer be adjacent to the

actin and no cross-bridges can be formed. The hypothesis offered for explaining the loss of a capability for

contractile force generation during shortening is that, as the muscle becomes shorter and the cross-sectional

area increases, the distance between the actin and myosin filaments increases. This in turn decreases the

likelihood of a successful cross-bridge formation. Additionally, it is speculated that the pressure of fluid

in the muscle increases, generating a force opposed to contraction. Furthermore, when the contraction is

large enough for the H-band to disappear, the actin filaments overlap causing and interference with normal

function and a resultant reduced performance. [74]

2.5.2.3 Muscle force-length and force-velocity relationships

Skeletal muscle is sensitive to both its length in relation to the resting length and the rate at which its length

it is changing. Figure 2.14 depicts the experimental results used to gain an understanding of the relationship

between the force present in a muscle and its length and rate of change of length.

Figure 2.14a shows the typical force-stretch response for active skeletal muscle tested at a macroscopic level.

This data is produced from isometric (and thus iso-velocity) stretches of a stimulated muscle. It is observed

that the activated muscle responds to the elongation in two distinct stages. The initial response shows the

short-range stiffness of the muscle. This has been attributed to the deformation of the passive series-elastic

components, with little action of the cross-bridges. As the muscle continues to stretch, the tautness of the

muscle decreases as the cross-bridges start to break and reform. In this region, the stiffness of the muscle is

related to the rate at which cross-bridges detach from and reattach to the actin molecules. [45]

Isotonic experiments performed by Hill [103] to demonstrate the force-velocity relationship of fully tetanised

skeletal muscle, are illustrated in figure 2.14b. Under conditions of a constant preload force, the clamped
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Figure 2.14: Typical experimental responses for bulk skeletal muscle.

muscle is maximally stimulated and released against a variable load. There is an inverse relationship between

the generated contractile force and the velocity of contraction. The contractile velocity was also observed to

increase as the preload increased. One physiological factor dictating this relationship is the rate at which

cross-bridges can attach to the opposing moving filament.

2.5.3 The nervous system and muscle contraction

Muscle contraction occurs through a complex electro-chemical and mechanical event facilitated by the deliv-

ery of specific chemical substances at nerve endings. The activation of a varying number of neurones causes

the recruitment of a varying number of muscle fibres and therefore a gradual and controlled contraction

event.

The impulse controlling contraction and relaxation is delivered to each myofibre by a somatic motor nerve,

a subset of the central nervous system. The motor nerve can end in several neuromuscular junctions, collec-

tively known as a motor unit, each of which stimulates a single muscle fibre. The activation of a somatic nerve

can therefore lead to the simultaneous activation of a number of muscle fibres. Through the asynchronous

stimulation of several motor units, the contraction of the entire muscle can be accurately controlled. The

strength of muscle contraction is determined by the number of motor units recruited (and therefore the num-

ber of muscle fibres involved in active contraction), as well as rate at which a stimulus or impulse is delivered

to the muscle. The larger the group of myofibres recruited for contraction, the greater the overall contractile

strength but the less the degree of fine motor control available. [74]

Temporary stimulation of a muscle fibre results in a contraction that is not sustained. The contraction is

sustained as long as the signal is delivered and when a signal ceases the muscle relaxes. This cycle of con-

traction and relaxation is known as a twitch. Each individual stimulus causes the muscle to twitch. The

process whereby successive twitches build up contractile strength, a phenomenon known as the summation

of twitches, is described with the aid of figure 2.15.

At a low stimulation frequency, the muscle contracts and then undergoes a period of relaxation and the tone

reduces. Before the muscle can completely relax, it may be stimulated once more and thus reach a peak

contractile force greater than in the previous twitch. Continued stimulation at a low frequency will only

result in the force developing to a level less than the maximum that the muscle is physiologically capable
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Figure 2.15: Tetanisation and the summation of twitches [78, 74]. Increased stimulation frequency of muscle

results in the generation of greater contractile forces. Each curve represents the force history

resulting from a differing period between impulses.

of producing. Increasing the frequency of stimulation causes the muscle to twitch more rapidly until each

individual twitch is indistinguishable from another. In this state, a critical stimulation frequency has been

reached or exceeded, and the muscle is said to be fully tetanised or in a state of complete tetany. In this state,

the muscle is able to produce its maximum contractile force. Above any critical frequency, the increase in

contraction force is slight. [74]

2.6 Measured neurological response of the tongue

Due to its primary role in maintaining airway patency, the activity of the GG is commonly probed in research

involving human sleep disorders. The early experimental work of Sauerland and Harper [247], EMG mon-

itoring of the tongue muscles (by wire-electrodes) lead to the conclusion that the tonic loss of GG activity

during REM sleep may lead to upper airway obstruction. Later in the important work of Remmers et al.

[231], it was demonstrated that the GG response, measured with the use of EMG, is very different in patients

experiencing upper airway occlusion compared to healthy subjects. In the OSA patients, is a marked decline

in reflexive response of the GG to airway pressure, with lower levels of activity recorded in these cases across

a range of airway pressures.

Figure 2.16 illustrates typical post-processed EMG data demonstrating the response of the GG to the changing

airway pressure. Similar results under differing experimental conditions can be seen in Malhotra et al. [165],

Stanchina et al. [261]. This particular dataset highlight indicates four potential apnoea events, where upon

inspiration the airway pressure has lowered considerably without any additional activity being recorded

in the GG response. More complex electrical studies, such as those involving manual electrical stimulation

of the GG, have been performed by Oliven et al. [199], Isono et al. [126, 127] to determine the relationship

between GG contraction and airway CSA.

Akahoshi et al. [3] designed experiments where the ventilation of the airway in healthy, awake subjects (in the
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Figure 2.16: Typical raw EMG results indicating four events of decreased epiglottal pressure without a corre-

sponding additional recruitment of the GG. Image sourced from Pierce et al. [221].

Figure 2.17: Results of a passive ventilation experiment demonstrating the relationship between the negative

airway pressure and GG activity. Image sourced from Akahoshi et al. [3].

Figure 2.18: Approximation of GG activity during sleep and wake states for use in computational simulations

of the tongue. Sleep state transition occurs at approximately 450Pa, and a general reduction in

muscle tone is visible. Image sourced from Huang et al. [111].

PAGE 29



2 ‚ ANATOMY AND PHYSIOLOGY

supine position) was controlled in order to determine the relationship between the GG activity and airway

pressure. These results, indicating a direct link between the airway pressure and GG activity, are presented

in figure 2.17. The authors noted that the loss of this reflexive response by the GG could lead to OSA. Similar

trends indicating a linear response of the GG to inspirational airway pressure [164], and hysteresis in different

stages of breathing, have been presented by Remmers et al. [231], Malhotra et al. [167], White [308], Fogel et al.

[73]. This proportional response during the wakeful condition, as well a stagnation of the response during

sleep (that is, that the GG response peaks at a threshold pressure during sleep and has no increasing response

as the pressure continues to drop), is also indicated by Malhotra et al. [165].

Huang et al. [111] used the above information to estimate the activity of the GG during sleep. In figure 2.18,

their approximation for the response of the GG in wakeful and sleep conditions is shown. The authors,

based on information in the literature, assumed that the slow and fast (tonic and phasic) muscle reactions

during sleep would be reduced by 15% for normal breathing. Furthermore, the critical pressure threshold at

which there is a loss of reflexive mechanisms in the GG [231], resulting in the practically negligible change in

contractile state of dilator muscles, was set at approximately ´450Pa. Using this model, the airway collapse

pressure was estimated by the authors to be ´490Pa and ´687Pa for male and female subjects respectively.
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3. CONTINUUM MECHANICS

Continuum mechanics provides a basis for formulating the mathematical descriptions of materials that demon-

strate complex behaviours. In this chapter, the fundamental notation, finite-strain kinematics, kinetics and

balance laws governing homogenised continuous solid media are presented.

Following the description of motion and deformation, strain measures and their invariants are presented. A

redefinition of the basic kinematic terms to account for the prestressing of biological materials follows. Vari-

ous stress measures are defined in the context of large-deformation mechanics. Thereafter, the development

of the theory of elasticity for both isotropic and transversely isotropic hyperelastic materials is summarised;

and, as the modelling of biological materials involves incompressible media, the procedure to decouple the

volumetric and isochoric material behaviour is described. Lastly, the kinematics of two motion-dependent

boundary conditions used to approximate complex physiological conditions is developed.

3.1 Kinematics

The basic kinematic configuration is presented in figure 3.1. The position of material points in B0 P R
3,

defined in a stationary reference configuration Ω0, are denoted by X . The boundary of B0 is denoted as

Γ0. Upon deformation, the body B0 is transformed to B defined in the spatial configuration Ω, with points

denoted by X displacing to x and the surface to Γ.

The motion ϕ, a nonlinear map transforming points in B0 to points in B , is defined by

x “ ϕ pX, tq . (3.1)

The displacement and velocity fields respectively are given by

u pX, tq “ x ´ X , v “ 9u . (3.2)

The deformation gradient associated with the motion is given by

F “
Bϕ

BX
“ ∇0 ϕ “ I ` ∇0 u (3.3)
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e1

e2

e3

Γ
ϕ
0

Γt
0

Γϕ

Γt

B0

B

Ω0

Ω

t “ 0

X

x

N

n

ϕ pX, tq

F

Figure 3.1: Kinematics described by deformation of a general body. Illustrated are the bodies in the refer-

ence and current configurations, the transformation maps and operators, and the definition of

boundary conditions.

where the gradient is taken with respect to the material coordinate system. The deformation gradient de-

scribes the transformation a line element in Ω0, denoted as dX , to Ω by

dx “ FdX . (3.4)

For consistency in the index notation used in this text, quantities defined in the Ω0 will be capitalised while

quantities in Ω will be presented in lowercase. The requirement that equation 3.1 remains single valued and

produces a compatible strain field implies that

∇0 ˆF “ 0 . (3.5)

Furthermore, the requirement of the invertibility of ϕ implies that the inverse map

X “ ϕ´1 px, tq (3.6)

exists. The inverse of the deformation gradient is given by

F´1 “
Bϕ´1

Bx
“ ∇ϕ´1 (3.7)

and the volumetric Jacobian by

J :“ detF “ λ1λ2λ3 ą 0 (3.8)

where λi are the eigenvalues of F . Note that the spatial gradient of the motion can be represented in terms

of the material quantities

∇ϕ “
Bϕ

Bx
“

Bϕ

BX

BX

Bx
“ ∇0 ϕF

´1 . (3.9)

The velocity gradient, defined with respect to the spatial configuration, is given by

l :“ ∇v “
Bv

Bx
“

Bv

BX

BX

Bx
“ ∇0 vF

´1 “ 9FF´1 (3.10)
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and the rate-of-strain tensor

d “ lS “
1

2

´
l ` lT

¯
(3.11)

where the deformation rate 9F :“ ∇0 9ϕ and p‚qS :“
1

2

”
p‚q ` p‚qT

ı
denotes an operation that produces the

symmetric part of the tensor p‚q.

At any position in the domain B0, the change in volume of an infinitesimal volume element is related to the

motion by

dv “ JdV . (3.12)

To define the transformation of surface normals between configurations, consider an area vector dA “

NdA “ dY ˆ dZ defined in the reference configuration, where N is the normal to the surface and dY , dZ

are orthogonal vectors tangent to Γ0 at the material point X . Nanson’s formula describes the transformation

of an area element to the current configuration by

nda “ dy ˆ dz “ FdY ˆ FdZ “ JF´TNdA (3.13)

where n is normal to the surface Γ at x.

The right (material) and left (spatial) Cauchy-Green deformation tensors are defined by

C :“ F TF (3.14a)

b :“ FF T (3.14b)

respectively. Utilising the polar decomposition theorem, the deformation gradient can be decomposed into

two discrete motions

F “ UR “ RV (3.15)

where R is a proper, orthogonal rotation tensor (RT “ R´1, detR “ 1) associated with the deformation,

and U ,V are the positive-definite symmetric (PDS) material and spatial stretch tensors respectively. As the

Cauchy-Green tensors are PDS, they have the spectral decomposition

C “ U2 “
ÿ

α

λ2αEα b Eα (3.16a)

b “ V 2 “
ÿ

α

λ2αeα b eα (3.16b)

where λi represents the principal stretch (or eigenvalue) corresponding to the principal direction (or eigen-

vector) Ei, ei respectively defined in the material and spatial reference frames. The associated deformation

gradient is decomposed into

F “
ÿ

α

λαeα b Eα . (3.17)

The Green-Lagrange strain tensor is related to the right Cauchy-Green tensor, and therefore the displacement

gradient, by

E :“
1

2
pC ´ Iq “

1

2

`
∇0 u ` ∇0 u

T ` ∇0 u
T
∇0 u

˘
. (3.18)
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The true strain of a line element aligned in the principal direction is related to the stretch of a line element by

ε “

ż

L

dL

L0
“ ln

ˆ
L

L0

˙
“ ln pλq (3.19)

where λ is a principal stretch. An arbitrary unit line element originating at X with direction N is reorientated

by equation 3.4 to the direction n and undergoes a stretch of magnitude λ “ |FN | as described by

λn “ FN . (3.20)

The scalar invariants of a symmetric strain tensor provide measures of deformation that are reference frame-

invariant. Given a symmetric deformation or strain quantity A, the three commonly defined invariants of A

are

IA1 “ tr pAq “ A : I “ λA1 ` λA2 ` λA3 , IA1 “ Aii (3.21a)

IA2 “
1

2

´
tr pAq2 ´ tr

`
A2

˘¯
“ λA1 λ

A
2 ` λA2 λ

A
3 ` λA1 λ

A
3 , IA2 “

1

2
pAiiAjj ´ AijAjiq (3.21b)

IA3 “ detA “ λA1 λ
A
2 λ

A
3 , IA3 “ ϵijkA1iA2jA3k (3.21c)

where λAi are the principal values of A.

Note that the volumetric Jacobian and the third invariant of the right Cauchy-Green tensor are related by

IC3 “ J2 (3.22)

and that the first three invariants of C and b are equal. An additional invariant of the Cauchy-Green defor-

mation tensors, often referred to as I4, is one that describes a directional value and is defined in terms of the

right Cauchy-Green tensor as

λ2 “ N ¨ CN “ C : pN b Nq . (3.23a)

Here N describes a direction vector defined on Ω0. This relationship can be derived from equation 3.20 or

inferred from the principal value decomposition given in equation 3.16a. If N i is aligned with the principal

directions of its counterpart deformation tensor, then the invariants described by equation 3.23a give the

principal values λ2i .

3.1.1 Zero strain configuration

The presence of the gravitational body force acting on the pliable tissues of the HUA implies that the con-

figuration from which the images are extracted is not stress- or strain-free. To account for the pre-strain and

prestress, an additional configuration state, namely the zero strain configuration, is introduced. Figure 3.2

illustrates the three configurations and the relationship between them.

The initial configuration, not necessarily the same as the reference configuration, is denoted ΩI. The total

displacement and deformation gradient are redefined as

uCI “ x ´ xI “ px ´ Xq `
`
X ´ xI˘ “ uCR ` uRI (3.24)

F CI :“ F “
dx

dxI “ F CRF RI (3.25)
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FRI
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FCI

Figure 3.2: Deformation of a general body with a non-trivial zero strain configuration. The kinematic config-

urations illustrate the initial ΩI, undeformed Ω0 and current Ω configurations and the relationship

between the deformation gradients.

such that

dx “ F CIdxI (3.26)

with xI “ ϕ pXq
ˇ̌
ˇ
ΩI“Ω,t“0

and dxI representing specifically a point and line-element in the initial configura-

tion respectively. The subscript notation C,R, I is used to denote the current, reference and initial configura-

tions respectively. The definitions of the deformation gradients between the various states are

F CR :“ ∇0 ϕ “
dx

dX
and F IR :“

dxI

dX
, F RI “

´
F IR

¯´1

. (3.27)

The total deformation gradient is multiplicatively decomposed into two parts with F RI and F CR respectively

mapping line segments from the initial to the reference configuration and the reference to the current config-

uration.

The total stretch of any line element in therefore

λCI :“ λ “ λCR λRI ” |FnI| (3.28)

with the stretch of the line element from the reference to the initial and current configurations calculated by

λCR “ |F CRN | and λIR “ |F IRN | , λRI “
´
λIR

¯´1

(3.29)

respectively. The updated direction of the line element in the current configuration is calculated directly from

the reference direction with

n “
´
λCR

¯´1

F CRN . (3.30)

A brief proof of the validity of the decomposition is provided in appendix A.1.
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3.2 Kinetics

The description of forces acting on bodies and stress quantities relevant to large-strain mechanics are now

discussed. Work conjugacy, a key component to the development of constitutive relations between kinematic

and kinetic quantities, is then presented.

3.2.1 Stress measures

The definition of stress can be produced by considering a force acting on the (internal) surface of a body

to produce deformation. Figure 3.3 illustrates the forces and traction vectors acting on a body in the spatial

configuration and their equivalent counterparts in the material setting. The Cauchy stress theorem states that

e1

e2

e3

Ω0

Ω

N

n

ϕ pX, tq

dA

da

T

t

df0

df

df

Figure 3.3: The relationship between material and spatial normal, force and traction vectors visualised on the

internal surface of a body.

force acting on a surface area da is related to the Cauchy stress through the traction vector

df “ tda :“ σnda (3.31)

where the traction t is the force per unit current surface area and the Cauchy stress σ is a symmetric second-

order tensor that acts on a surface normal to produce the traction.

The Cauchy postulate,

tda “ t0dA , (3.32)

links the traction vectors defined in the two configurations. Through the application of Nanson’s formula

(equation 3.13) to equation 3.32, the traction defined on the spatial domain in equation 3.31 can be expressed

in terms of quantities in the reference domain by

tda “
´
JσF´T

¯
NdA (3.33)

with the first Piola-Kirchhoff stress, which has mixed bases, defined as

P :“ JσF´T . (3.34)
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To facilitate the description of the relationship between force and stress measures in the different configura-

tions, the push-forward and pull-backward operations are introduced. For vectors, the respective operations

are

χ p‚q :“ F p‚q (3.35)

χ´1 p‚q :“ F´1 p‚q (3.36)

and second-order tensors they are defined as

χ p‚q :“ F p‚qF T (3.37)

χ´1 p‚q :“ F´1 p‚qF´T . (3.38)

Using equation 3.36 on the boundary force df , a fictitious force describing an equivalent force acting on the

reference configuration can be produced. The result of this is

df 0 “ χ´1 pdfq “
´
JF´1σF´T

¯
NdA (3.39)

where the second Piola-Kirchhoff stress tensor is related to the Cauchy and first Piola-Kirchhoff stresses by

S :“ JF´1σF´T “ F´1P . (3.40)

An additional symmetric stress quantity is the Kirchhoff stress tensor, defined as

τ :“ Jσ “ χ pSq (3.41)

and describes the current traction per unit reference area.

3.2.2 Work conjugacy

The requirement for a body in equilibrium is that there is a balance of forces acting on the body, or more

precisely that the sources of momentum acting on the surface of a body and those acting on its interior are in

equilibrium. This can be described mathematically by

Ω

ż
b dΩ `

Γ

ż
t dΓ ´

B

Bt Ω

ż
ρv dΩ “ 0 . (3.42)

Assuming that the inertial forces ρ 9v are negligible, equation 3.42 reduces to

Ω

ż
b dΩ `

Γ

ż
t dΓ “ 0 . (3.43)

The divergence (or Gauss) theorem,

Γ

ż
a ¨ n dΓ “

Ω

ż
∇ ¨a dΩ ,

Γ

ż
aini dΓ “

Ω

ż
Bai
Bxi

dΩ , (3.44)

provides a relationship between the flux of a vector field a through the surface of a body and the vector field

within the body itself.
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Testing equation 3.43 with an arbitrary velocity v, restructuring the boundary term using equation 3.31 and

utilising equation 3.44 in conjunction with the chain rule results in the description of mechanical power due

to volume and surfaces forces

9W “
Ω

ż
v ¨ pb ` ∇ ¨σq dΩ `

Ω

ż
σ : d dΩ . (3.45)

The terms collected in the first integral are the weak form of the equilibrium equation (equation 3.43) and are

consequently equal to zero. The Cauchy stress σ and symmetric rate-of-strain tensor d are power conjugate

pairs and the domain integral of the their inner-product is a measure of the work rate of internal stresses.

The domain of integration in equation 3.43 can be changed using equation 3.12 such that

Ω

ż
dΩ “

Ω0

ż
J dΩ0 . (3.46)

Manipulation of equation 3.45 using equations 3.34, 3.40 and 3.46 identifies the power conjugate pairs for the

first and second Piola-Kirchhoff stresses,

Ω

ż
σ : d dΩ “

Ω0

ż
τ : d dΩ0 (3.47a)

“
Ω0

ż
P : 9F dΩ0 (3.47b)

“
Ω0

ż
S : 9E dΩ0 (3.47c)

“
Ω0

ż
S :

1

2
9C dΩ0 with 9E “

1

2
9C from equation 3.18.

The strain-rate conjugates for P and S are the deformation rate and time-rate of the Lagrangian strain tensors

respectively.

3.3 Hyperelasticity

Hyperelastic materials are idealised elastic materials for which a constitutive model can be derived from a

strain-energy function (SEF). Assuming that the scalar SEF ψ describes the stored energy per unit reference

volume of a single material, it can equivalently expressed using various strain variables through application

of the principle of frame-indifference

ψ “ ψ̂ pF q “ ψ̄ pCq “ qψ pEq “ rψ pbq . (3.48)

Utilising the chain rule, the time-rate of the SEF is

9ψ “
Bψ̂

Bt
“

Bψ̂

BF
:

BF

Bt
“

Bψ̂

BF
: 9F . (3.49)

Comparing equation 3.49 to equation 3.34, it is observed that the first Piola-Kirchhoff stress can be expressed

in terms of the SEF by

P “
Bψ̂ pF q

BF
. (3.50)

Similarly, using equations 3.18 and 3.40, it can be demonstrated that the SEF and the second Piola-Kirchhoff

stress are related by

S “
Bqψ pEq

BE
“ 2

Bψ̄ pCq

BC
. (3.51)
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Starting with rψ pbq, taking the time derivative, applying the chain rule and comparing to equation 3.47a, it is

deduced that

τ “ 2
Brψ pbq

Bb
b “ 2b

Brψ pbq

Bb
. (3.52)

Furthermore, the application of equation 3.41 to equation 3.51 shows that the following identity holds

τ “ χ

ˆ
2

Bψ̄ pCq

BC

˙
. (3.53)

This demonstrates that equation 3.53 can be derived from equation 3.51 using equation 3.37 and noting that

the invariants of C and b are the same.

3.3.1 Elasticity tensor

A first-order expansion of the second Piola-Kirchhoff stress for a general material

9S “
BS pEq

BE
: 9E “ H : 9E (3.54)

is derived from equation 3.51 using the chain rule. The referential elasticity tensor has been defined as H “
BS pEq

BE
“ 2

BS pCq

BC
. Due to the symmetries exhibited by the stress and strain tensors in equation 3.54, H

exhibits minor symmetries.

As S is derived from a scalar SEF, then following from equation 3.51, the referential elasticity tensor is of the

form

H “
BS pEq

BE
“

B2ψ pEq

BEBE
“ 4

B2ψ pCq

BCBC
(3.55)

which demonstrates that H also exhibits major symmetry as the order in which the differential operation

occurs is arbitrary.

The spatial elasticity tensor JC “ χ pHq can be developed from equation 3.55 using the push-forward opera-

tion

χ p‚q :“ F sbF : p‚q : F T sbF T , (3.56)

where the non-standard tensor product is defined as

pAsbBqijkl :“ AikBjl , (3.57)

with the result that

JC “ 4b
B2ψ pbq

BbBb
b . (3.58)

The elasticity tensors discussed here are required for the linearisation of the weak form of the governing

equations discussed in chapter 4.

3.4 Material behaviour

Following the description of general hyperelastic materials, the general form for SEFs that describe isotropic

and transversely isotropic materials is presented.
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3.4.1 Isotropy

An elastic material is considered isotropic if the constitutive equation for the material is independent of the

orientation of the body. As they are direction independent, the SEF governing the material behaviour must

similarly objective (that is, independent of the reference frame of measurement). Thus, the SEF must be a

function of the strain invariants or the principle stretches

ψ “ ψ̄ pI1, I2, I3q (3.59a)

“ rψ pλ1,λ2,λ3q . (3.59b)

Additionally, the SEF description in terms of the principal stretches λ1,λ2,λ3 must be independent of the

order of the function parameters, that is

ψ “ rψ pλi,λj ,λkq @ i ‰ j ‰ k . (3.60)

Using the relationships presented in equations 3.51, 3.52 and 3.59a, the stresses can derived from the relevant

SEF by application of the chain rule, with the result that

S “ 2

ˆ
Bψ

BIC1

BIC1
BC

`
Bψ

BIC2

BIC2
BC

`
Bψ

BIC3

BIC3
BC

˙
(3.61)

τ “ 2b

ˆ
Bψ

BIb1

BIb1
Bb

`
Bψ

BIb2

BIb2
Bb

`
Bψ

BIb3

BIb3
Bb

˙
(3.62)

where ICi and Ibi are invariants of the right and left Cauchy-Green tensors given by equations 3.21a to 3.21c.

The derivation of the elasticity tensors from equations 3.55 and 3.58 can be arrived at in a similar manner. The

components of these stress and elasticity tensors are derived for a general fibrous material in appendix C.1,

3.4.2 Transverse isotropy

Transversely isotropic materials, for example those with fibre-reinforcement, have a preferred directionality.

The material properties in the plane orthogonal to the preferred direction are isotropic, as shown in figure 3.4.

The unit line element N f “ N f pXq, which describes the directionality of the material, is transformed to

nf “ nf pX, tq under deformation by equation 3.20.

The desire to describe the behaviour of such a material using a SEF which must be reference frame indiffer-

ent, requires that the description given in equation 3.59a and therefore equation 3.48 be modified to include

additional invariants that are direction dependent. The additional directional contribution to the SEF in

equation 3.59a is

ψf “ ψf pλfq (3.63)

with the directional stretch λf, dependent on a predefined referential direction vector N f, calculable from

equation 3.23a. The direction-dependent stretch is related to the traditional description of the fourth invariant

by

IC4 “ λf
2 (3.64)

but due to the generality of the materials to be described, the notation presented in equation 3.63 is retained.
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plane of isotropy are identi-

cal.

Figure 3.4: Depiction of a general transversely isotropic material.

The second Piola-Kirchhoff stress associated the directionally dependent component of the SEF given in

equation 3.63 is

Sf “ 2
Bψf pλfq

BC
“ 2

Bψf pλfq

Bλf

Bλf

BC
“ 2ψ1

f
Bλf

BC
(3.65)

where, as shown in equation A.11, the quantity
Bλf

BC
can be calculated from equation 3.23a by specifying the

direction vector N “ N f.

3.5 Balance laws

The relevant classical balance laws for Newtonian systems, namely the conservation of mass and linear mo-

mentum, are summarised in this section.

3.5.1 Conservation of mass

The principle of mass conservation states that the total mass in a system remains constant, which implies that

9m “ 0 . (3.66)

An infinitesimal mass element in the reference configuration therefore retains its mass under deformation

and, using equation 3.12, it follows that

dm “ ρ0dV “ ρdv “ ρJdV

ñ ρ0 “ Jρ (3.67)

where ρ0, ρ are the density of the infinitesimal volume as described in the material and spatial configurations

respectively.
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3.5.2 Balance of linear momentum

The conservation of linear momentum, which can be derived from the first law of thermodynamics, is pre-

sented in the strong form in terms of the spatial setting. It describes the balance of forces due to inertial,

internal and body forces. Variational principles are applied to the linear momentum equation to produce the

weak form of the equilibrium equation governing quasi-static, elastic solids.

3.5.3 Strong form

The conservation of linear momentum under the assumption of quasi-static conditions reads

∇ ¨σ ` b “ 0 on Ω (3.68)

where the b denotes the body force. The quasi-static conditions are relevant for this problem due to the

assumption of slow movement of the anatomy. The conservation of angular momentum dictates that the

Cauchy stress is symmetric, that is σ “ σT .

3.5.4 Weak form

Multiplying equation 3.68 from the left by an arbitrary test function δv and integrating over the current

domain, the weak form of the linear momentum equation reads

Ω

ż
δv ¨ p∇ ¨σq dΩ `

Ω

ż
δv ¨ b dΩ “ 0 . (3.69)

Application of the product rule and divergence theorem, namely

∇ ¨ pAbq “ p∇ ¨Aq ¨ b ` A : ∇ b and (3.70a)

Ω

ż
∇ ¨ c dΩ “

Γ

ż
c ¨ n dΓ ñ

Ω

ż
∇ ¨ pAbq dΩ “

Γ

ż
An ¨ b dΓ , (3.70b)

for the arbitrary tensor A and vectors b, c, to the first term of equation 3.69 transfers the derivative from the

stress-term to the test function, with the result that

´
Ω

ż
∇ δv : σ dΩ `

Γt

ż
δv ¨ σn dΓt `

Ω

ż
δv ¨ b dΩ “ 0 . (3.71)

The test function is defined such that δv :“ 0 on the Dirichlet boundary Γϕ.

Recognising that the second term of equation 3.71, namely the boundary integral, involves the surface trac-

tion, we can write the final weak form of the equilibrium equation as

Ω

ż
∇ δv : σ dΩ “

Γt

ż
δv ¨ t dΓt `

Ω

ż
δv ¨ b dΩ . (3.72)

The left-hand side of equation 3.72 is the rate of internal work, previously derived in equation 3.45.
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3.6 Decoupling of the volumetric and isochoric contributions

In this section, the concept of separating the description of the motion into volume-preserving and dilata-

tional components is presented. This is necessary to describe an equivalent pressure for incompressible me-

dia, for which the bulk modulus is infinite, through the use of Lagrange multipliers. Rubber-like materials

and many other physical media, be they compressible or incompressible, exhibit greatly different behaviour

under hydrostatic pressure versus shear stress. This methodology assists in providing a mechanism for the

accurate representation of this behaviour.

3.6.1 Decomposition of deformation gradient

Assuming a multiplicative split of the motion into a volume preserving- and a dilatational part [254], the

deformation gradient can be decomposed into

F “ pF F̄ , (3.73)

with

pF :“ J
1

3 I ( volumetric ) and (3.74a)

F̄ :“ J´ 1

3F ( isochoric ) . (3.74b)

The isochoric deformation gradient F̄ has a determinant det F̄ “ 1. The right and left Cauchy-Green defor-

mation tensor have isochoric counterparts, calculated using equation 3.74b and expressed as

C̄ “ J´ 2

3C “ F̄
T
F̄ , (3.75)

b̄ “ J´ 2

3 b “ F̄ F̄
T . (3.76)

The invariant isochoric directional stretch derived from equation 3.23a is

λ̄f
2

“ C̄ : pN f b N fq . (3.77)

3.6.2 Decomposition of strain-energy function

Under the assumption that the volumetric response of the material is independent of the isochoric response

[254, 176, 314], the transversely isotropic SEF can be additively decomposed as

ψ “ ψvol pJq ` ψiso
`
b̄, λ̄f

˘
(3.78)

where ψvol describes the total energy due to volumetric deformation and ψiso describes the total energy due

to the component of deformation that is volume-preserving. Note that the relationship described in equa-

tion 3.22 has been used to introduce the volumetric Jacobian in place of the third invariant used in equa-

tion 3.59a.

Using the relationship given in equation 3.52, the Kirchhoff stress for the decoupled SEF can be developed

from equation 3.78, which results in

τ “ τ vol pJq ` τ iso
`
b̄, λ̄f

˘
(3.79)
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where

τ vol pJq “ 2b

„
Bψvol

BJ

BJ

Bb

ȷ
(3.80)

and

τ iso
`
b̄, λ̄f

˘
“ 2b

„
Bψiso

Bb̄
:

Bb̄

Bb

ȷ
“ 2b

«˜
Bψiso

Bb̄

ˇ̌
ˇ̌
λ̄f

`
Bψiso

Bλ̄f

ˇ̌
ˇ̌
b̄

Bλ̄f

Bb̄

¸

:
Bb̄

Bb

ff

. (3.81)

The result of this derivation is listed in equations 3.82a to 3.82c in table 3.1.

Table 3.1: Continuum mechanics relationships for volumetric-isochoric decomposition.

Kirchhoff stresses Spatial elasticity tensors

τ vol “ pJI (3.82a)

τ iso “ P : τ̄ (3.82b)

τ̄ “ 2
Bψiso pbq

Bb
b

ˇ̌
ˇ̌
b“b̄

“ pτ iso pb,λfq
∣

∣

∣

b“b̄

(3.82c)

JCvol “ J pp̃I b I ´ 2pIq , p̃ “ p ` J
Bp
BJ

(3.83a)

JCiso “
2

3
tr τ̄ P ` P : JC̄ : P ´

2

3
pτ iso b I ` I b τ isoq (3.83b)

JC̄ “ J pCiso pb,λfq
ˇ̌
ˇ
b“b̄

(3.83c)

In equation 3.82a, p “
Bψvol

BJ
denotes the pressure response1 and I is the identity tensor. The tensor pτ iso in

equation 3.82c is the Kirchhoff stress derived from the isochoric parts of the material constitutive equations

outlined later in table 5.1. The deviatoric projection tensor P is defined as

P “ I ´
1

3
I b I (3.84)

where the symmetric fourth-order identity tensor is given by

Iijkl “
1

2
pδikδjl ` δilδjkq . (3.85)

The relationship between the elastic modulii in the current configuration and the decomposed SEF, provided

in equation 3.58, results in the following definition of the elastic modulus

JC “ JCvol pJq ` JCiso
`
b̄, λ̄f

˘
(3.86)

which are tabulated in table 3.1. The material tangent tensor pCiso is determined from the isochoric parts of the

constitutive equations listed later in table 5.1. The spatial elasticity tensors for the decoupled problem retain

the major symmetry and minor symmetries that exist in the coupled form. A full derivation of the uncoupled

model for hyperelastic materials is presented in appendix A.3.

3.7 Motion-dependent boundary conditions

The geometry of the HUA is complex and capturing the dynamics of all of the components of the anatomy

is an extremely challenging task. However, the challenges lie not only in geometric reconstruction, but also

1 The pressure response is simply the negative value of the hydrostatic pressure.
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in representing the physical interaction between mobile and fixed parts due to muscle contraction and con-

strained motion by contact interaction.

The tongue uses both extrinsic and intrinsic muscles to perform a broad spectrum of movements. The ex-

trinsic muscles have a bony attachment outside the tongue and terminate inside the body of the tongue. For

example, the styloglossus (SG) originates at the base of the skull and inserts into the posterior surface of the

tongue after traversing tissues in the neck. Direct inclusion of some of these extrinsic muscles into a com-

putational model is difficult as the geometry of the extrinsic muscles and the tissues that surround them is

challenging to define.

This section details two physically representative boundary-related models that remove the difficulties asso-

ciated with incorporating these anatomical features. They necessitate the formulation of boundary conditions

that provide a balance between geometric complexity, physical accuracy and computational effort. As these

boundary terms are motion-dependent, their consistent linearisation is also detailed.

With reference to figure 3.1, the boundary of the reference domain is decomposed into regions with pre-

scribed displacements and tractions such that Γ0 “ Γ
ϕ
0
Ť

Γt
0. The region with prescribed traction is further

decomposed into position dependent and displacement dependent portions Γt
0 “ ΓtpXq

0
Ť

Γtpuq
0 . The motion

dependent contribution is further decomposed such that

t “ t puq on Γtpuq
0 “ Γtt

0

ď
Γtf

0 and Γtt
0

č
Γtf

0 ‰ H . (3.87)

The former component of the displacement dependent traction boundary, Γtt
0 , is discussed in section 3.7.1

while the latter is presented in section 3.7.2.

3.7.1 Fictitious material layer

This boundary model describes a fictitious layer of tissue of prescribed composition and thickness that sur-

rounds a region of the boundary Γtt
0 . The motivation for the development of this model lies in the necessity

for a weak motion constraint on some of the extrinsic muscles of the tongue. In vivo, these muscles are

attached to a complex arrangement of tissues that extend through the full thickness of the throat. All the

tissues (muscle, adipose tissue and others) are flexible and none are fully constrained. However, although

in vivo they collectively act to support these structures, and their presence therefore is required to provide a

stress condition on the tissues of interest, their complex geometric nature makes their inclusion in this study

undesirable.

This boundary contribution therefore, in a simple but consistent manner, approximates the normal and shear

stresses at the interface between the parts of the anatomy that have been excluded from the model and those

that are directly captured in the computational domain. Appendix D.2 provides an example of the model,

while a fully-detailed derivation of the model is given in appendix A.4.1.

3.7.1.1 Kinematics of the material layer

By definition, the thickness of the material layer is measured with respect to the normal N , that is the

outward-normal at X on Γtt
0 . The opposite side of the boundary is considered to be completely fixed in

space. Figure 3.5 depicts the description of the terms defined to describe the boundary traction.
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Ω0

Ω

uN

u
uS

θ

eN

eS1

eS2

t
tN

tS

h0

h

Figure 3.5: Visual description of the fictitious material layer boundary condition.

An orthonormal basis at X is defined such that

Normal: eN :“ N pXq (3.88)

Tangential: eSα
:“ ξα pXq , α P t1, 2u . (3.89)

The tangential basis vectors are arbitrarily chosen on the surface Γtt
0 at X . Note that the bases for the calcula-

tions are defined on the reference configuration, and are therefore constant with changing displacement. The

component of the displacement normal to the boundary is

uN “ pu ¨ Nq eN , (3.90)

while the tangential displacement is given by

uSα
“ pu ¨ eSα

q eSα
. (3.91)

Note that when u ¨ N ą 0, material compression occurs. Given the prescribed thickness of surface material

layer h0, the current thickness of surface material layer under deformation is

h “ h0 ´ u ¨ N . (3.92)

Consistent with equation 3.90, from equation 3.92 it is observed that h ă h0 if u ¨ N ą 0, which implies that

compression occurs.

From the definitions of displacement, strain measures can be formulated. The 1-d true strain in the direction

of the normal is

ε “ ε puq “ ln

ˆ
h puq

h0

˙
(3.93)

and the 1-d shear strain, aligned with the corresponding tangential basis, is given by

γ “ γ puq “ tan θ “
uS

h
“

u ¨ eSα

h
. (3.94)

It should be noted that the sign changes in ε and γ can be used to orientate the traction with respect to the

normal and tangential basis vectors. Ultimately it is expected that the traction opposes the motion.
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3.7.1.2 Kinetics of the material layer

The traction vector acting on the boundary can be resolved into normal and tangential components

text
t “ tN ` tS (3.95)

with each component decomposed into a scalar value and direction vector

tN
t :“ tNN (3.96a)

tSα
t :“

ÿ

α

tSα
eSα

, α P t1, 2u . (3.96b)

The 1-d normal stress is

tN “ σN pεq «
Bσ

Bε
ε “ E pεq ε (3.97)

while the 1-d shear stresses are given by

tSα
“ σSα

pγαq « ´G p|γα|q γα “ ´
E p|γα|q

2 p1 ` νq
γα . (3.98)

Here E and G represent the small strain Young and shear modulus respectively, and ν is the material Pois-

son’s ratio. Another observation concerning the signs in equations 3.97 and 3.98 must be made. For the

normal component, σN ą 0 if ε ą 0 (that is, tension occurs as the normal displacement is anti-parallel to

normal basis) and σN ă 0 if ε ă 0 (implying that compression occurs). In the shear direction, σSα
ą 0 if γ ă 0

(tangential displacement is anti-parallel to tangential basis). Given the current formulation, the material is

considered isotropic in shear and therefore exhibits a transversely isotropic behaviour overall.

3.7.1.3 Linearisation of the material layer traction contributions

The linearisation of the traction vector given in equation 3.95 with respect to the displacement yields the

stiffness contribution

Cext
t “

Btext
t

Bu
“

BtN
t

Bu
`

ÿ

α

BtSα
t

Bu
(3.99)

where the tangent2 for the normal part of the traction vector

CN
t “

BtN
t

Bu
“ ´

ˆ
BE

Bε
ε` E

˙
h´1N b N (3.100)

and that of the tangential part of the traction vector is

CSα
t “

BtSα
t

Bu
“ ´

ˆ
BG

B|γα|
|γα| ` G

˙
h´1eSα

b peSα
` γNq (3.101a)

« ´

ˆ
BG

B|γα|
|γα| ` G

˙
h´1eSα

b eSα
for γα ! 1 . (3.101b)

The term in equation 3.101a involving the shear strain does not have a symmetric counterpart so it is removed

with a small shear strain assumption3 resulting in equation 3.101b.

2 Although the local tangent contribution is negative definite, its contribution to the global tangent matrix will be a positive definite

one due to a sign change in the global contribution. This can be observed in table 4.1.
3 Alternatively, this term could be symmeterised, leading to an alternative tangent approximation that suits the symmetric formula-

tion utilised in this work.
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3.7.2 External fibres

The external fibre model developed in this section provides a simplified representation of the region of the

muscles that extends beyond the computational domain. This allows the force-generating effect of an ex-

cluded volume of muscle tissue to be captured while reducing the complexity of the model geometry. Al-

though applied specifically to muscle fibres in this work, the model is derived for fibrous structures in gen-

eral. A full derivation of the model is presented in appendix A.4.2, and an example demonstrating its use is

presented in section 7.2.1.1.

3.7.2.1 Kinematics of external fibres

A schematic of the kinematics for a single fibre is shown in figure 3.6. The origin or permanent fixture point

for the fibre is represented by XO, and the insertion point X I on Γtf
0 that, under deformation, is displaced to

xI “ ϕ
´
X I

¯
.

XO

XI
Ω0

xI

Ω

L0
f Lf

u pXq

N f

nf
θ

Figure 3.6: Representation of external fibres attached at the model boundaries. Note that the fibres are not

necessarily orthogonal to the surface, but by definition N ¨ N f ą 0. Additionally, due to the

physical scenario being represented, it should be ensured at the condition n ¨ nf ą 0 is always

met.

The fibre direction is defined to be in the direction of the surface outwards normal. The original and current

fibre length vector is given by

L0
f “ L0

f N f :“ XO ´ X I (3.102a)

Lf “ Lfnf “ XO ´ xI (3.102b)

with N f,nf unit vectors in the direction of the material and spatial fibre directions. Using the relationship

between the displacement and current position given in equation 3.2, the current configuration vector quan-
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tities can be redefined in terms of the displacement, namely that

Lf :“ L0
f ´ u (3.103)

nf “ nf puq :“
1

Lf

`
L0

f ´ u
˘

. (3.104)

Using the defined length measures, the motion-dependent fibre stretch is therefore

λf “ λf puq :“
Lf

L0
f

. (3.105)

3.7.2.2 Kinetics of external fibres

It is expected that the line of action of the force generated by the fibre be aligned with the fibre direction. To

this end, the external fibre traction vector is defined as

text
f :“ φfλfTfnf “ σfn (3.106)

as motivated by equation 5.4c. The magnitude of the traction, text
f “ φfλfTf, results naturally from the de-

scription of direction-dependent hyperelastic materials. The nominal fibre stress Tf “ Tf pλfq is governed by

the fibre constitutive model.

3.7.2.3 Linearisation of external fibre traction contributions

The linearisation of the current traction equation 3.106 results in the material stiffness contribution

Cext
f “

dtext
f

du
“ ´

φf

L0
f

„
λf
dTf

dλf
nf b nf ` TfI

ȷ
. (3.107)

This second-order tensor is symmetric and contains stiffness contributions in the fibre direction as well as the

directions orthogonal to the fibre direction. A comment on the validity of the negative definite nature of the

tangent is made in footnote 2 on page 47.
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As many biological materials are incompressible, it is necessary to utilise a FE formulation that does not

exhibit the locking behaviour that standard low-order formulations exhibit in the incompressible limit. Mo-

tivated by these considerations, a robust, stable and computationally efficient three-field formulation for

incompressible media is presented in section 4.1. The finite element method (FEM) implementation of the

mixed problem is described in section 4.2. The resulting mean-dilatation Q1-P0-P0 element, proposed by

Nagtegaal et al. [189] and developed by Simo et al. [254], has all of the required characteristics. It alleviates

the issues of volumetric locking in incompressible materials and shear-locking in bending dominated prob-

lems experienced by standard low-order elements [176]. Coupled with an augmented Lagrangian method, it

has been successfully used to model incompressible biological soft tissues [306, 82].

4.1 Variational functional: A mixed formulation for incompressibility

The equation describing the incompressibility condition is

J ´ 1 “ 0 on Ω . (4.1)

Satisfaction of the incompressibility condition naturally ensures that conservation of mass (equation 3.67)

occurs. An extra variable θ, namely the dilatation describing the volume change due to hydrostatic loading,

is introduced to prevent ill-conditioning of the tangent matrices [176]. Equation 4.1 is replaced with the

amended equations

J ´ θ “ 0 on Ω (4.2a)

θ ´ 1 “ 0 on Ω (4.2b)

where equation 4.2a describes the equivalence of the volumetric Jacobian and the dilatation in the incom-

pressible limit, and equation 4.2b is used to enforce incompressibility.

A three-field functional that describes total stored energy in the system and incorporates equations 4.2a

and 4.2b was developed [253, 176]. This functional, which exploits the additive split of the SEF, is given

by

Π “ Π pϕ, θ,Λ, pq :“ Πint pϕ, θ,Λ, pq ` Πext pϕq ñ stationary , (4.3a)

Πint pϕ, θ,Λ, pq :“
Ω0

ż " “
ψvol pθq ` ψiso

`
b̄ pϕq , λ̄f pϕq

˘‰
` p pJ pϕq ´ θq ` Λ pθ ´ 1q

*
dΩ0 , (4.3b)

Πext pϕq :“ ´
Ω0

ż
ϕ ¨ b0 dΩ0 ´

Γt
0

ż
ϕ ¨ t0 pϕq dΓt

0 (4.3c)
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where the leading terms in the square bracket describe the elastic potential, p is a Lagrange multiplier in-

terpreted as the pressure response1, Λ is a Lagrange multiplier enforcing the incompressibility constraint,

and b0, t0 are the referential body and traction forces. It should be noted that ψvol is now a function of the

dilatation.

4.1.1 Weak form of equilibrium equation

The stationary point of equation 4.3a is the equilibrium solution to the problem. Minimisation of the en-

ergy functional leads to the weak form of the equilibrium equation, which satisfies the strong form of the

governing equations.

The Frechét derivative (or, more generally, the Gâteaux derivative), defined for vector and scalar quantities

by

DxΠ px,y, zq ¨ δx “
d

dε

∣

∣

∣

∣

ε“0

Π px ` εδx,y, zq , DzΠ px,y, zq ¨ δz “
d

dγ

∣

∣

∣

∣

γ“0

Π px,y, z ` γδzq , (4.4)

gives the directional derivative of a potential function Π with respect to a dependent variable. The stationary

point of the problem is the solution where the total derivative of the potential function is zero. The variation

of equation 4.3a using the Frechét derivative leads to the weak form of three-field formulation, namely

Rδϕint “ DϕΠint ¨ δϕ “
Ω0

ż
p∇ δϕq : rτ iso ` pJIs dΩ0 (4.5a)

Rδϕext “ DϕΠext ¨ δϕ “ ´
Ω0

ż
δϕ ¨ b0 dΩ0 ´

Γt
0

ż
δϕ ¨ t0 pϕq dΓt

0 (4.5b)

Rδpint “ DpΠint ¨ δp “
Ω0

ż
δp pJ ´ θq dΩ0 (4.5c)

Rδθint “ DθΠint ¨ δθ “
Ω0

ż
δθ

`
ψ1

vol pθq ` Λ ´ p
˘

dΩ0 . (4.5d)

Equations 4.5a and 4.5b collectively give the weak form of the balance of linear momentum, identical to

equation 3.72, while the addition of equations 4.5c and 4.5d ensures that a configuration satisfying material

incompressibility is attained. The procedure of deriving equations 4.5a to 4.5d is detailed in appendix B.2.1.

As these equations have a nonlinear nature, the stationary point cannot be determined directly. An itera-

tive nonlinear solution algorithm was employed to linearise the governing equations and solve them. The

procedure of linearisation and a nonlinear solution algorithm is presented in section 4.2.

4.2 Linearisation

To illustrate the linearisation process, consider the one vector-field functional rΠ pϕq. The stationary point of
rΠ is found at

B rΠ pϕq

Bϕ
“ 0 , (4.6)

1 This quantity is related to the hydrostatic pressure in that the one is the negative of the other. Written in terms of the hydrostatic

pressure, equation 4.3b would take the form of a saddle point problem.
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which can be solved for using an iterative method. The first-order Taylor expansion of equation 4.6 is

B rΠ pϕq

Bϕ
`

B2rΠ pϕq

Bϕ2
∆ϕ ` O

`
∆ϕ2

˘
“ 0 . (4.7)

Ignoring the higher-order terms, the resulting linearisation of rΠ provides the incremental update for the

Newton-Raphson method, namely

B2rΠ pϕqn

Bϕ2
∆ϕn “ ´

B rΠ pϕqn

Bϕ
ñ ∆ϕn “

«
B2rΠ pϕqn

Bϕ2

ff´1 ˜

´
B rΠ pϕqn

Bϕ

¸

(4.8)

where the Newton increments n occur at a chosen and constant time t. The vector ∆ϕn is a predicted approx-

imation for the solution update from the configuration ϕn
ˇ̌
ˇ
t
. The updated configuration for the next Newton

step is therefore

ϕn`1 “ ϕn ` ∆ϕn . (4.9)

The quantities
B rΠ pϕqn

Bϕ
and

B2rΠ pϕqn

Bϕ2
are the residual and tangent respectively, both of which are evaluated

at the nth Newton increment.

From the three-field functional (equation 4.3a), a full variation results in a residual equation that can be fur-

ther linearised for implementation in a Newton-Raphson solution algorithm, as demonstrated by Simo et al.

[254]. The procedure and result of linearising equations 4.5a to 4.5d using the Frechét derivative (equation 4.4)

is described in appendix B.2.2. As the implementation will be carried out solely for Q1-P0-P0 elements, a

simplification of the resulting equations can be performed. The dilatation and pressure field are considered

piecewise constant on each finite element and can therefore be condensed out of the formulation at the ele-

ment level. Simo and Taylor [253] show that substitution of the known dilatation and pressure variables into

the full residual and tangent equations leads to a reduced formulation given in equations 4.16a and 4.17a.

The steps taken to attain this result are shown in appendix B.3.

The result of the linearisation of the free-energy functional given in equation 4.3a and subsequent static-

condensation procedure is summarised in table 4.1. The dilatation and pressure variables are determined for

the displacement configuration using equations 4.12 to 4.15. The dilatation is first calculated as the ratio of the

current to reference cell volume, and the calculation of the pressure follows using the value of the dilatation

and the volumetric SEF defined by equation 5.7. As the pressure response is no longer a field variable, the

volumetric Kirchhoff stress term and its associated tangent are defined as

τ vol :“ peJI , JCvol :“ peJ pI b I ´ 2 q . (4.10)

4.2.1 Enforcement of incompressibility condition

The field variable Λ is treated as an augmented Lagrange multiplier in order to effectively enforce incom-

pressibility without creating an overly stiff system that is computationally expensive to solve. Use of the

Uzawa update scheme [253] allows the field to be treated as constant within a Newton-Raphson loop and

then updated for the next Uzawa iteration as

Λu`1 “ Λu ` κu pθu ´ 1q . (4.11)
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Table 4.1: Linearisation of three-field functional and static-condensation of piecewise constant pressure and

dilatation fields.

Element reference and current volumes

Ve “
Ω

e
0

ż
dΩe

0 (4.12) ve “
Ω

e
0

ż
J dΩe

0 (4.13)

Element dilatation and pressure

θe “
ve

Ve (4.14) pe “ ψ1
vol

`
θe˘

` Λ
e (4.15)

Residual

R pδϕ,ϕq “ Rint pδϕ,ϕq ` Rext pδϕ,ϕq (4.16a)

Rint pδϕ,ϕq “
Ω0

ż
∇ pδϕq : rτ vol ` τ isos dΩ0 (4.16b)

Rext pδϕ,ϕq “ ´
Ω0

ż
pδϕq ¨ ρ0g dΩ0 ´

Γ
tpXq
0

ż
pδϕq ¨ t0 pXq dΓtpXq

0 ´
Γ

tpuq
0

ż
pδϕq ¨ t0

ext pϕq dΓtpuq
0 (4.16c)

Linearisation of residual

K pδϕ,∆ϕ,ϕq “ Kmat ` Kgeo ` Kvol ` Ktpuq (4.17a)

Kmat “
Ω0

ż
∇ pδϕq : rJCvol ` JCisos : ∇ p∆ϕq dΩ0 (4.17b)

Kgeo “
Ω0

ż
∇ pδϕq : p∇ p∆ϕq rτ vol ` τ isosq dΩ0 (4.17c)

Kvol “

nelř
e“1

«
1

Ve
Ω

e
0

ż
∇ pδϕq : JI dΩe

0

ff
“
ψ2

vol

`
θe˘

Ve‰
«

1

Ve
Ω

e
0

ż
JI : ∇ p∆ϕq dΩe

0

ff

(4.17d)

Ktpuq “ ´
Γ

tpuq
0

ż
pδϕq ¨ Cext

t ¨ p∆ϕq dΓtpuq
0 (4.17e)

For incompressible materials, the effective bulk modulus at each Uzawa iteration is calculated by

κu “ κˆ 1.5u (4.18)

where κ “
E

3 p1 ´ 2νq
represents an initial approximation material bulk modulus that, in the incompressible

limit, tends to 8. This function increases exponentially with each iteration to accelerate the enforcement of

the condition. Incompressibility is considered to be attained when the overall dilatation error is less than

0.1%.

4.2.2 Boundary conditions

The boundary Γ :“ BΩ is decomposed into non-overlapping Dirichlet and Neumann parts Γϕ and Γt such

that

Γ “ Γϕ
ď

Γt with Γϕ
č

Γt “ 0 . (4.19)

The essential boundary condition

ϕ “ ϕ̄ on Γϕ (4.20)
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is imposed on degrees-of-freedom for which a prescribed displacement exists.

The natural boundary condition, imposed on all other surfaces, is

t “

$
&

%
t̄ “ σn on ΓtpXq

text on Γtpuq
(4.21a)

where σ represents external stresses acting on the body, n is the outward normal at the surface of the body

in the spatial configuration. Nanson’s formula (equation 3.13) is used to transform the traction description

given above to the referential form used in equation 4.16c. For surfaces that experience the influence of fluid

pressure, σ “ ´pI and free boundaries have no traction, i.e. t “ 0. The external traction conditions that text

encompasses are described in sections 3.7.1.2 and 3.7.2.2.

4.3 Finite element implementation

In solid mechanics, a Lagrangian framework is commonly used. The natural description of the governing

equations is one in which the coordinate system remains stationary. In particular, this work uses the total

Lagrangian formulation where all calculations are performed on a permanent and unchanging reference

domain.

Setting the body configuration to the current configuration, the motion ϕ “ x is related to the material points

by equation 3.2 and the variation and increments of the motion are

δϕ “ δx “ δ pX ` u pϕqq “ δu , ∆ϕ “ ∆u . (4.22)

The gradients of the motion are therefore

∇ pδϕq “ ∇ pδuq , ∇ p∆ϕq “ ∇ p∆uq . (4.23)

The motion can be approximated in terms of the FE shape functions. The FE approximation/interpolation

for the displacement field u is given by [114]

ϕ pX, tq « ϕh pX, tq “

nnodeÿ

I“1

N I pXq uI ptq (4.24)

where N I pXq represents the standard continuous scalar piecewise-linear finite element shape functions de-

fined on Ωh and the vector uI ptq gives the nodal values of the unknown displacement field at a given time t.

That continuous shape functions are used for the displacement field, the compatibility condition (equa-

tion 3.5) is naturally satisfied. Figure 4.1 illustrates the form of the linear shape functions associated with

the central node of a domain discretised into 4 regular elements. Similarly, the virtual and incremental nodal

displacements can be represented as

δϕh “

nnodeÿ

I“1

N I δuI , ∆ϕh “

nnodeÿ

I“1

N I ∆uI (4.25)

respectively. Given the identity

∇ pcaq “ c∇a ` a b ∇ c , (4.26)
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Figure 4.1: Piecewise-bilinear shape function on a regular two-dimensional domain of 4 elements.

for the scalar quantity c and vector a, the discretised gradient of the motion with respect to the reference

configuration becomes

∇0 ϕ «

nnodeÿ

I“1

uI b ∇0 N
I “

nnodeÿ

I“1

uI b BI (4.27)

due to the independence of uI ptq on position. The material shape function gradient vector is

∇0 N
I “ BI “

"
BN I

BX1

BN I

BX2

BN I

BX3

*T

. (4.28)

Similarly, the discretised gradient of the motion with respect to the current configuration is

∇ϕ “
B

Bx
pϕq «

nnodeÿ

I“1

uI b
‹

B
I (4.29)

where
‹

B
I

“ ∇N I.

However, as the total Lagrangian formulation is utilised, the spatial gradient shape functions used in equa-

tions 4.16b, 4.17b and 4.17c are not directly available during computation. On the other hand, the reference

gradient shape functions can be pushed forward into the current configuration by

∇ϕ “
Bϕ

BX

BX

Bx
“ ∇0 ϕF

´1 «

nnodeÿ

I“1

uI b BIF´1 with F´1 ”
´
F CR

¯´1

, (4.30)

thereby keeping the shape function gradient evaluations on the reference domain. The virtual and incremen-

tal nodal gradients can thus be represented as

∇

´
δϕh

¯
“

nnodeÿ

I“1

δuI b
‹

B
I , ∇

´
∆ϕh

¯
“

nnodeÿ

I“1

∆uI b
‹

B
I with

‹

B
I

“ BIF´1 (4.31)

respectively.

Applying the finite element decomposition, the finite element approximation of the residual and linearised

stiffness are

R pδu,uq “

nnodeÿ

I“1

δuI ¨ RI , (4.32a)

K pδu,∆u,uq “

nnodeÿ

I,J“1

δuI ¨ KIJ ¨ ∆uJ (4.32b)
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respectively.

Since equations 4.32a and 4.32b should hold for arbitrary δuh, it follows that equation 4.8 can be rewritten in

matrix form as

K∆u “ ´R (4.33)

where R, K are the global residual vector and tangent stiffness matrix respectively.

Table 4.2 presents the discrete form of the linear problem. The symmetry of the Kirchhoff stress tensor and

the elasticity tensors have been exploited and the tangent matrix described by equations 4.35b to 4.35d is PDS.

Though equation 4.35e appears negative, the local tangent contribution Cext
t is negative definite, resulting in

the overall positive definite contribution from the term.

Table 4.2: FE description of the linearised problem at time t and Newton step n.

Residual

RI pδϕ,ϕq “ RI
int pδϕ,ϕq ` RI

ext pδϕ,ϕq (4.34a)

RI
int pδϕ,ϕq “

nel

A
e“1

Ω
e
0

ż
‹

B
I

¨ rτ vol ` τ isos dΩe
0 (4.34b)

RI
ext pδϕ,ϕq “

nel

A
e“1

«

´
Ω

e
0

ż
N I ρ0g dΩe

0 ´
Γ

e,tpXq
0

ż
N I t0 pXq dΓe,tpXq

0

´
Γ

e,tpuq
0

ż
N I t0

ext pϕq dΓe,tpuq
0

ff (4.34c)

Tangent stiffness matrix

KIJ pδϕ,∆ϕ,ϕq “ KIJ
mat ` KIJ

geo ` KIJ
vol ` KIJ

tpuq (4.35a)

KIJ
mat “

nel

A
e“1

Ω
e
0

ż
‹

B
I

¨ rJCvol ` JCisos ¨
‹

B
J dΩe

0 (4.35b)

KIJ
geo “

nel

A
e“1

Ω
e
0

ż
‹

B
I

¨ rτ vol ` τ isos ¨
‹

B
J
δIJ dΩe

0 (4.35c)

KIJ
vol “

nel

A
e“1

«
1

Ve
Ω

e
0

ż
‹

B
I

¨ JI dΩe
0

ff
“
ψ2

vol

`
θe˘

Ve‰
«

1

Ve
Ω

e
0

ż
JI ¨

‹

B
I dΩe

0

ff

(4.35d)

KIJ
tpuq “

nel

A
e“1

«

´
Γ

e,tpuq
0

ż
N I Cext

t N J dΓe,tpuq
0

ff

(4.35e)

4.4 Implementation of the finite element problem

The finite element method, in conjunction with a Newton-Raphson algorithm, was used to solve for the dis-

placement field. The FEM problem was solved using the open-source finite-element library deal.II [13, 14].

The most computationally costly portions of the algorithms were the assembly and solving of the linear

system, as well as the update of discontinuous local variables performed by solving complex nonlinear equa-

tions. In this section, a brief description of some of the practical aspects of the implementation of the FE
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problem is given. A study was also performed to validate the implementation of quasi-incompressible finite-

strain elasticity using the Q1-P0-P0 element. This is presented in appendix D.1.

The following points pertaining to the assembly and information update operations are relevant:

Multithreading: Modern technologies provide frameworks with which to perform computational tasks while

utilising multiple CPU cores simultaneously. The threaded building blocks [123, 142] framework was

used here to share discrete and computationally expensive tasks between cores on a large shared mem-

ory processor (SMP) machine. In particular, this was applied for the assembly process and to update

information at computational points. Implementing this framework saved much time as the local prob-

lem solved at computational (quadrature) points is expensive2, performed regularly3 and problem de-

pendent4.

Precomputation and optimisation: Minimising the number of redundant calculations at the expense of mem-

ory results in faster algorithms being produced5. The valgrind [193] toolbox in conjunction with KCachegrind

[303] were used to optimise the workflow and minimise computation as much as possible.

Symmetry: The numerous symmetries in the global system, and various stress and elasticity tensors, were

exploited as often as possible. Data was stored in a symmetric form frequently as the algorithms in-

tegrated into deal.II utilise the nature of symmetric tensors to perform computations more rapidly. A

significant reduction in the computational expense of system assembly was attained by exploiting the

symmetry of the global problem6.

The linear system resulting from the incompressible solid problem is symmetric and may under certain cir-

cumstances be stiff. With regards to solving the linearised system of equations, the following details are

pertinent:

Solver: For small problems (usually those being test cases) the direct solver UMFPACK [55] was utilised.

For mid-size problems, the conjugate gradient (CG) solver (valid for symmetric systems) provided by

deal.II was used. To minimise the linear solver time for large problems or those that were anticipated to

take extended periods of time to solve, the Trilinos [100] CG solver [99] in conjunction with multi-core

communication framework OpenMPI [79] and the domain decomposition toolbox Metis [136] was used.

Preconditioner: The use of a preconditioner assisted with attaining convergence and reducing the amount of

computational effort required for convergence (i.e. minimise iterations in linear solver). The symmetric

successive over-relaxation (SSOR) solver was used in conjunction with the CG solver as it was found

2 At each computational point in muscle tissue, there may exist a number of fibres that have a discrete equilibrium problem to be

solved. In finding this solution, there are many nested computations in the muscle model which make it an expensive operation to

perform.
3 The nonlinearly varying fibre variables are not solved as field variables, but rather using a staggered approach. At each state

change, Newton and linesearch iterations, it is required that the equilibrium solution for fibres at all computational points be

recomputed. As the stability of the problem relies heavily on the use of a damping procedure, the linesearch operation becomes an

expensive procedure.
4 The domain is composed of numerous materials which make effective domain decomposition difficult for CPU load balancing

difficult. It is desirable that the time spent performing local updates involving the complex muscle problem be minimised. This

implies that the CPU usage should maximised.
5 During assembly operations, stress and elasticity tensors were precomputed at each calculation point. The spatial shape function

gradients were precomputed values for each cell using equation 4.30.
6 The global stiffness matrix was produced by assembling its diagonal contributions and lower half. The latter was subsequently

copied into the upper half upon the completion of the assembly process.
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that the simple Jacobi preconditioner was not suitable for the biological problem at the core of this

work. An algebraic multigrid (AMG) preconditioner [83] was used to reduce linear iterations when

using the Trilinos CG solver. Since the inertial terms are ignored, the problem is elliptic, and the AMG

preconditioner was optimised for this property.

Step control: It was observed that step-size control was critical in order to attain reasonable convergence

rates for the highly nonlinear problems being solved. This point is discussed in section 4.4.1.

4.4.1 Damped Newton method

Due to the highly nonlinear nature of the governing and constitutive equations, there is a need for some form

of step optimisation. This is to ensure optimal convergence in the Newton-Raphson algorithm, as well as

prevent possible divergence. However, using the full-step, or an arbitrary choice of damping parameter, may

result in solution instability or sub-optimal convergence rates. The backtracking linesearch algorithm was

implemented to determine the optimal step size at each Newton increment.

The updated displacement solution can be written in terms of the previous solution and the damped Newton

update

un`1 “ un ` β∆un (4.36)

for the damping parameter bounds

0 ă βmin ď β ď βmax . (4.37)

where the choice βmax ď 1 is appropriate for the Newton-Raphson algorithm. Here ∆un is guaranteed to be

the direction of steepest descent to minimise the residual R punq as the exact tangent is evaluated for each

displacement configuration.

It is desired that the optimum step-size β is determined as to ensure that the residual at each Newton iteration

n is less than that of the previously evaluated step. That is,

}R pun ` β∆unq } ă }R punq } . (4.38)

This is achieved by minimising the total system energy with respect to the step size [314]

BΠ pϕq

Bβ
“

BΠ pϕq

Bϕ

Bϕ

Bβ
“ R pun ` β∆unq ¨ ∆un “ 0 . (4.39)

This implies that the step-size should be chosen such that the displacement update and new residual vectors

are orthogonal. Solving this problem is the same as minimising the energy function

g pβq “ ´R0 ¨ Ri “ 0 (4.40)

with

R0 “ R punq , Ri “ R
´
un ` βi∆un

¯
. (4.41)

A new value of the step-size βi`1 must be iteratively selected within each Newton step n until the optimum

step-size is determined. There are a number of methods to solve for the appropriate value of β. For example,

Bonet and Wood [26] approximate g pβq as quadratic, Press et al. [224] assume the function is cubic, and
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both solve for the roots and update the approximation iteratively. Since the functions involved in this work

are highly nonlinear, these methods exhibit poor convergence characteristics, and we find that the linear

approximation suggested by Wriggers [314] works better in practise for this particular problem. The updating

for the step-size parameter was calculated using the secant method [314]

βi`1 “ βi ´ gi β
i ´ βi´1

gi ´ gi´1
(4.42)

was found to work best in practise. If g p0q ¨ g p1q ď 0, then, assuming that g pβq is continuous, by the

intermediate value theorem there must be a value of β such that g pβq “ 0. If g p0q¨g p1q ą 0, then extrapolation

occurs to find a minimum value for g pβq within the bounds set by equation 4.37. The initialisation values for

the algorithm are

gi´1 “ g p0q “ ´R0 ¨ R0 with β0 “ 0 (4.43)

gi “ g p1q “ ´R0 ¨ R1 with β1 “ 1 . (4.44)

In order to minimise the number of linesearch iterations i, we define a termination tolerance with an accept-

able value for β being one that satisfies the strong Wolfe conditions. The two conditions that compose the

Wolfe conditions are the Armijo rule [184]

gi ď g0 ` c1β
i∆un ¨ R0 (4.45)

that checks whether a sufficient decrease in residual is attained and the modified curvature condition [184]

|∆un ¨ Ri| ď c2|∆un ¨ R0| (4.46)

which prevents too short a step from being taken. The parameters for the Wolfe conditions were chosen to

be c1 “ 1 ˆ 10´4, c2 “ 0.9.
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Now that the continuum framework has been discussed, the constitutive models that govern material be-

haviour are presented. The general constitutive equation for a decoupled fibrous hyperelastic material is

developed, followed by the constitutive models of biological tissues. The constitutive model for muscular

tissue is defined separately in chapter 6.

5.1 Constitutive equations for fibrous hyperelastic materials

A SEF that governs the behaviour of a general fibrous hyperelastic material, described in terms of the invari-

ants of the left Cauchy-Green tensor and the fibre stretch, is given by

ψ “ ψ
`
J, b̄, λ̄f

˘
“ ψJ pJq ` φMψM

`
Īb1, Ī

b
2

˘
`

ÿ

f

φfψf
`
λ̄f

˘
(5.1a)

“ ψJ pJq ` ψM
`
Īb1, Ī

b
2

˘
`

ÿ

f

φf

`
ψf

`
λ̄f

˘
´ ψM

`
Īb1, Ī

b
2

˘˘
(5.1b)

where ψ describes the strain-energy per unit volume. This description is an altered form of that presented by

Humphrey and Yin [116], Martins et al. [170], Holzapfel et al. [107] that was modified to include an arbitrary

collection of fibre families and the volumetric contribution of fibres as presented by Baaijens et al. [9], Planas

et al. [222], van Oijen [290].

The rule of mixtures [9, 222], valid for incompressible materials, is applied to describe the volume fractions

of the constituent components

φM `
ř
f
φf “ 1 . (5.2)

The first term of equation 5.1b describes the volumetric response of the material, while the second term

describes the isochoric response of a general bulk material. The third term introduces isochoric anisotropic

contributions from any fibres that may be embedded in the bulk material1.

Note that this allows for the presence of multiple interweaving fibre families at any point in the domain

[107]. The bulk material can therefore be one that is isotropic, uniaxially orthotropic, transversely isotropic or

1 Sansour [246] has demonstrated that enforcing the fibre contribution to exhibit isochoric behaviour leads to a material response

that is not necessarily consistent with the assumptions used in the development of one-dimensional fibre models. However the

description used here is not only commonly used to introduce fibre contributions in models of this nature (see [116, 107]), but also

required by the mixing theory to satisfy the compatibility condition [290].
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Table 5.1: Continuum mechanics relationships for general fibrous hyperelastic materials.

Tensor invariants Kirchhoff stresses

Ib1 “ tr pbq (5.3a)

Ib2 “
1

2

`
tr pbq2 ´ tr

`
b2

˘˘
(5.3b)

Ib3 “ J2 “ det pF q2 (5.3c)

λf
2 “ C : pN f b N fq (5.3d)

τJ “ ψ1
JJI (5.4a)

τM “ 2

„ˆ
BψM

BIb1
` Ib1

BψM

BIb2

˙
b ´

BψM

BIb2
b2
ȷ

(5.4b)

τ f “
ÿ

f

φfψ
1
fλfnf b nf (5.4c)

Spatial elasticity tensors

JCJ “ J
“`
ψ1

J ` Jψ2
J

˘
I b I ´

`
2ψ1

J

˘
I
‰

(5.5a)

JCM “ 4

«˜
B2ψM

BIb1
2

` 2Ib1
B2ψM

BIb1BIb2
` Ib1

2 B2ψM

BIb2
2

`
BψM

BIb2

¸

b b b

´

˜
B2ψM

BIb1BIb2
` Ib1

B2ψM

BIb2
2

¸
`
b2 b b ` b b b2

˘
`

˜
B2ψM

BIb2
2

¸

b2 b b2 ´

ˆ
BψM

BIb2

˙
b sb b

ff (5.5b)

JCF “
ÿ

f

φf

`
ψ2

f ´ ψ1
fλf

´1
˘
λf

2nf b nf b nf b nf (5.5c)

completely anisotropic. Fibre families are assumed not to interact with one another through friction or any

other direct mechanism. The overall response is, however, coupled.

Table 5.1 provides the definitions2 of the Kirchhoff stresses and tangent matrices for general fibrous hypere-

lastic materials given in equation 5.1b in terms of the governing SEF. These relationships are defined for the

appropriate parts of equations 3.79 and 3.86. It should be noted that the elasticity contributions presented in

equations 5.5a to 5.5c display both major and minor symmetries.

5.2 Volume-averaged stress

As observed in those micro-histological specimens illustrated in section 2.2.2, a major portion of muscle

tissue consists of muscle fibres as opposed to interstitial tissue. The infinitesimal fibre volume models used

by Humphrey and Yin [116], Martins et al. [170], Holzapfel et al. [107] are not appropriate when representing

materials with large fractions of embedded fibres. Because the fibres now have a finite volume, they are

required to sustain transverse and shear loads. However, the material model for the muscle fibres, presented

in chapter 6, describes only the axial loading response of the one-dimensional fibres which can hold no load

in compression or shear. It is assumed that the transverse and shear loading response of a fibre bundle is the

same as that of the underlying matrix. However, they are still presumed to have no compressive load bearing

2 These equations, the development of which is shown in appendix C.1, are consistent with the definitions provided by Weiss et al.

[306], Martins et al. [170], Düster et al. [59]
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capabilities.

The overall Kirchhoff stress at any point in the domain is given by [290, 9]

τ “ τ J pJq ` φMτM

`
Īb1, Ī

b
2

˘
`

ÿ

f

φfτ f
`
λ̄f

˘
(5.6a)

“ τ J ` τM `
ÿ

f

φf

˜

λfψ
1
f ´

ÿ

f

φf pτM : nf b nfq

¸

nf b nf (5.6b)

« τ J ` τM `
ÿ

f

φfλfψ
1
fnf b nf . (5.6c)

Equation 5.6a gives the stress with a fibre description that can hold transverse and shear loads, and equa-

tion 5.6b has the transverse and shear loading processed out as described by Baaijens et al. [9] for multiple

fibre families.

This model does not easily describe behaviour representative of the experimentally obtained relationships

for passive muscular tissue (e.g. Van Ee et al. [282]). This is because the fibre volume fraction is high and

the passive component of muscle fibre is very compliant at small strains and only resists tensile deformation

[286]. These difficulties are mentioned by van Oijen [290] in their discussion on their application of the

rule-of-mixtures. The matrix stress component in the fibre direction was therefore retained, resulting in

equation 5.6c, which better reproduces the stress-strain relationships observed in the experimental data but

introduces an extra stiffness component in the fibre direction under tensile deformation3.

5.3 General constitutive models

The following section outlines the hyperelastic constitutive models used to describe the biological materials

applied in the computational model and provides material parameters for each material. The bulk material

models used in the main body of this work and the validation studies performed for the work were derived

from three general material types. They are all described in terms of deformation tensor invariants and

therefore fit into the framework listed in table 5.1. In addition to those models described below, the Yeoh and

two parameter Mooney-Rivlin models were also implemented for the purpose of evaluating material data

presented in the literature.

5.3.1 Volumetric function

The polyconvex volumetric SEF used in this work, which satisfies the criteria outlined in [253], is defined by

ψJ pθq “
1

4

`
θ2 ´ 1 ´ 2 ln pθq

˘
, (5.7)

and is valid for both compressible and quasi-incompressible materials. This is a specialisation of the general

function proposed by Ogden [106], namely

ψJ pθq “ β´2
`
θ´β ´ 1 ` β ln pθq

˘
(5.8)

with β “ ´2. Such a function satisfies the conditions that ψJ pθq
ˇ̌
θÑ0` “ 8, ψJ pθq

ˇ̌
θÑ8

“ 8 and ψ1
J p1q “ 0.

3 It has been noted that further consideration should be given to the matrix-fibre model. Effects, such as the stiffness ratio between

the fibres and matrix, have been shown by Lu et al. [160] to play a prominent role in the overall response of the constitutive model.

Sharafi and Blemker [251] also demonstrate that the model used to represent the underlying histology affects the material response.
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5.3.2 Neo-Hookean model

The Neo-Hookean model is a specialised form of the Mooney-Rivlin model. Having only a single parameter,

it makes it easy to characterise materials that the model fits. The small strain behaviour of the Neo-Hookean

material is nearly linear, so this model can be used to represent stiff materials that experience low magnitude

strains under load. The single material constant is given by

c0 “
µ

2
(5.9)

where the shear modulus is related to the Young’s modulus by

µ “
E

2 p1 ` νq
. (5.10)

5.3.3 Fung model

The Fung material model [78, 240], in this instance presented as a two-parameter model, can be used to

represent materials that exhibit exponentially increased stiffening at large strains, such as the isotropic bed

matrix for muscular tissue [116, 170, 107].

According to Humphrey and Yin [116], a SEF that describes the Fung model is

ψFung “ A1

ˆ
e
B1

´
Ib1´3

¯

´ 1

˙
. (5.11)

Note that the material nominally has a hydrostatic prestress p “ ´A1B1 as the first derivative of equation 5.11

is non-zero when Ib1 “ 1, i.e. for F “ I . However, the decoupling of the volumetric and isochoric stresses

and specifically the isochoric projection equation 3.82b removes this prestressing.

5.3.3.1 1-d model for representation of external tissues

The materials that are used in the model outlined in section 3.7.1 are all of the Fung-type. Uniaxial tests give

Young’s modulus for adipose and muscle (which is presented in the next chapter). Due to the difference in

stiffness in compression and tension, the uniaxial stiffness of these materials can be approximated by

EFung “

$
&

%
E0e

b0|ε|a0 if ε ě 0

E0e
b1|ε|a1 otherwise ,

(5.12)

where E0 is the zero strain Young’s modulus.

5.4 Tissue models

A brief description of the choice of material models and the properties of various tissues represented in this

work is given below.
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5.4.1 Bone

For the loading conditions considered, the hard tissues are expected to undergo significantly less deformation

than soft tissues. Both bone and cartilage are considerably stiffer materials in comparison to muscle and

adipose tissue. For this reason, a simple Neo-Hookean model give in section 5.3.2 is adopted as it is able to

capture the small strain nature of their deformation adequately.

Bone is assumed to have a zero strain Young’s modulus of 15GPa [219] (with a range of 0.76 ´ 42.1GPa based

on bone location, species and test conditions [219, 230]), Poisson’s ratio of 0.4 [230] (with a tested range of

between 0.08´0.482 depending on species, bone type, specimen location and test conditions as bone is strain-

rate dependent [230]) and density of 1900kg{m3 (with a range of 1100 ´ 3217kg{m3 dependent on bone type

and specimen location [124]).

5.4.2 Cartilage

For the cartilage of the epiglottis, the zero strain elastic modulus was assumed to be 3MPa for the slow

load changes exerted on the tissue [219] and a Poisson’s ratio of 0.42 [152], although documented values

range between 0.31 [233] and 0.47 [34] depending on the location of the specimen tested. The density of the

cartilage was assumed to be 1000kg{m3 as it is comprised mainly of water.

The Neo-Hookean material model has been chosen to best represent cartilage due to the expectation that

these tissues will experience a low degree of deformation.

5.4.3 Adipose tissue

A Fung free-energy function, presented in section 5.3.3, was used to describe the behaviour of the adipose

tissue. Although it exhibits viscoelastic effects [180], for the sake of simplicity these have been ignored.

The parameters A1 “ 2.5kPa and B1 “ 2.75, were chosen to fit4 uniaxial compression test data for the plantar

region of the foot [65]. A density of 920kg{m3 [69] was assumed. Figure 5.1 provides a comparison between

the experimental data presented by Erdemir et al. [65] and the model parameters chosen to describe fatty

tissue5. Parameters were chosen to fit the average stress-strain data provided in the literature.

5.4.3.1 1-d material model to represent external tissue

An equivalent 1-d material model for adipose tissue must be developed for use in the boundary model

presented in section 3.7.1. For this purpose, the model given in section 5.3.3.1 was appropriate. The uniaxial

test data presented in figure 5.1 was used to develop a nonlinear model of the strain-dependent stiffness

modulus. Assuming a Poisson’s ratio of ν “ 0.5 for incompressible tissue, the parameters presented in

4 In the uniaxial tests, displacement control is provided in the axial direction E1, while the surfaces in orthogonal E2 ´ E3 plane

remain traction-free such that σ2i “ σ3i “ 0. This provides one with a direct relationship between σ11 and ε11 and can therefore

be used to determine Young’s modulus E “ Bσ11

Bε11
. Here, the the true strain ε11 “ ln

?
E1 ¨ CE1.

5 Additional literature, such as [146, 47, 180], provided further insights into the nature of adipose tissue behaviour. However, the

data presented in these texts was not suitable for the determination of model parameters as they do not specify which stress and

strain measures have been used.
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Figure 5.1: Comparison of adipose tissue model against compression test data given in Erdemir et al. [65].

Model results were obtained using a uniaxial FEM test.

table 5.2 were determined to best represent the uniaxial behaviour of fatty tissue. Figure 5.2 reflects the

uniaxial stiffness of adipose tissue as represented by a full constitutive model and the 1-d material model.

It is demonstrated that the chosen parameters provide an accurate estimate for the uniaxial stiffness of the

adipose tissue model. A practical demonstration of its functioning is provided in appendix D.2.

Table 5.2: Parameters for 1-d model of adipose tissue.

True strain E0 a b

ε ě 0
10kPa

1.6 14.6

ε ă 0 1.6 9.6
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Figure 5.2: Young’s modulus for 1-d adipose tissue

model. Data plotted against measured re-

sults from uniaxial FEM test.
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There are two facets to modelling muscles that need careful consideration. These are the constitutive relation-

ships governing the fundamental behaviour of muscular tissue, and the signals to the muscle that influences

its contractile behaviour. Chapter 7 deals with the latter, while this section focuses on the former issue.

Key to the development of constitutive models is the concept of homogenisation, where the non-uniform

multi-scale effects are smoothed out to produce descriptions that approximate the average properties of the

material in the locale. Figures 2.10 and 2.12b depict the macro- and microscopic anatomical components of

general skeletal muscle. Using this as a point of departure, it becomes apparent that the following anatom-

ical structures are likely to affect the physiological functioning of muscle and need to be considered when

developing a material model for muscle1:

Tendon: Collagenous structures that connect muscle to bone must be pulled taut before muscle movement

can occur.

Connective tissue: The epimysium and perimysium prevent overextension and offer additional passive re-

sistance to movement.

Actin-Myosin complex: The foundation of muscle contraction here represented in a manner that is consis-

tent with experimental analysis of the function of the sarcomere.

Titin filament: Fine structures that hold the myosin filament in place contribute and to the elastic response

of muscle whilst offering passive resistance to muscle extension.

Z-disc: Like the titin filament these have passive elastic effect during tensile loading but also may provide

compressive resistance.

Firstly, we provide a brief introduction into the experimental research in the field of muscle mechanics. It is

this work that has formed the basis for development of theories of muscle contraction and the mathematical

models that describe these theories.

1 Experimental analysis of the behaviour of muscle during cyclic loading indicates that some secondary considerations must be

made. These include hysteresis, creep, relaxation and fatigue [78]. The first three phenomena are categorised as viscoelastic and

viscoplastic effects as they result in a difference in stress response during loading and unloading conditions.
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6.1 History of muscle models

6.1.1 Experimental research

Seminal work on understanding the basic functioning of muscular tissue was conducted by Hill [103] through

isometric and isotonic tests on a frog sartorius. It was demonstrated that the force generated by a tetanised

muscle during contraction and the velocity of contraction have a hyperbolic relation. It was also determined

that the tension depended on the resting length of the muscle and the number of active cross-bridges. From

this, it became clear that the response of a muscle in active contraction is vastly different to the passive muscle,

which displays a viscoelastic behaviour. Hill [104] later went on to further document the fundamentals of

active muscle mechanics and the length-tension relationship. In this work, a description of the passive and

active contributions to the total muscle force is provided.

Huxley proposed the sliding filament theory, describing the configuration of the functional active unit of

muscular tissue, the actin-myosin complex, based on research conducted in 1954 [78]. Detailed experiments

were conducted by Gordon et al. [90, 91] to accurately measure the length-tension relationship in striated

muscle and determine the state of the actin-myosin complex in terms of the sliding filament theory. Cor-

roborating results were obtained by ter Keurs et al. [274]. Huxley [118] provides a detailed summary of

experimental findings and their links to the sliding filament theory.

As seen in these landmark studies, with evolving research tools comes an evolution in our understanding of

the functioning of muscles from a number of viewpoints. At the most fundamental level, the biochemistry

involved in the actin-myosin complex is now well understood; this is detailed by Herzog and Ait-Haddou

[101] in their summary of Huxley’s models. Accurate rate-control in experimental analysis of active and pas-

sive tissue, such as those performed by Grover et al. [94], have further developed the macroscopic viscoelastic

properties of the tissue.

6.1.2 Fundamental models for the representation of muscle contraction

6.1.2.1 Cross-bridge theory

Cross-bridge theory, a mathematical representation of the sliding-filament theory proposed by Huxley [78,

218, 324, 312], describes the interaction of actin and myosin filaments. The underlying hypothesis of the

model is that the tensile stress in the contractile element can be expressed in terms of a probability frequency

function that that is dependent on the activation, the number of active cross-bridge sites and several physical

parameters. Kinetic theory is used to predict the response of the contractile element. It describes the probabil-

ity of a cross-bridge having been bonded to its activation site on the myosin filament, facilitating contraction

in the element.

Although this model makes several assumptions about the functioning of the cross-bridges [78, 324], it pro-

vides a good mathematical correlation between microscopic modelling and the macroscopic functioning of

the muscle and is widely considered to provide the most accurate description of the muscular contraction

process [45, 280]. However, other elastic muscle structures are ignored and the transmission of forces be-

tween muscle fibres is not accounted for. The cumulative effect of deformation of one part of the muscle on

another is also neglected and its ability to model fast activation has been questioned [48, 316].
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Additions to the model were provided by Mijailovich et al. [178], wherein they accounted for the extensibility

of the actin and myosin filaments measured during isometric contraction. The mechanics of individual sar-

comeres have also been explained by Cooke et al. [48] using cross-bridge theory. Both classical and modified

forms of the Huxley model have been used to explain mechanics and characteristics present at the level of a

single muscle fibre by Wu and Herzog [316], Rassier et al. [228].

6.1.2.2 Distribution moment model

The distribution moment model (DMM) was originally proposed by Zahalak in 1981 as an enhancement

of cross-bridge theory. The enhancements, which account for the effects of calcium activation on the cross-

bridges, are presented by Zahalak and Ma [324] (and also in [78]). Each cross-bridge can bond to its nearest

actin site provided that it has been activated by a calcium ion. The kinetic model of the Huxley model is

reinterpreted as the probability of finding an active cross-bridge at a binding site at any given time, and is

coupled to equations governing the concentration of calcium ions in the vicinity of cross-bridges.

Based on the Huxley-model, the distribution moment retains its benefits (and limitations [315]) and, in addi-

tion, can potentially describe the change in muscle properties during a rapid stretch in the muscle. However,

much experimental work is required to determine model parameters and, due to its derivation, requires that

the contractile tissue is considered incompressible.

Work performed by Zahalak and Ma [324] validated the accuracy of the model against cross-bridge theory

and experimental results, and demonstrated its application in modelling isometric contraction. Zahalak [323]

extended the application to the evaluation of muscle fibres, placed in the presence of solutes, in compressive

and tensile states.

6.1.2.3 Hill’s model

Hill [103] provided a simple, accurate representation of tetanised muscle. However, the application of this

model was limited due to the conditions under which it was produced. The model was unable to describe

a single twitch, wave-summation, the mechanical behaviour of unstimulated muscle or the force-velocity

relation when the tetanised muscle is released slowly or when strain varies with time.

The Hill three-element model, a phenomenological model which is an evolution of Hill’s model, was devel-

oped to correct some of its fundamental limitations. Fung [78] presented a version of the Hill three-element

model, shown in figure 6.1, which is consistent with the 1-d model as described by Hill and is widely adopted.

The arrangement of the elements used to describe the model are not unique as they can be used to represent

different parts of muscle physiology at different length scales. The configuration shown here has three sep-

arate components which together describe the motion of a single sarcomere. The representation of muscle-

tendon systems, for which it appears to be the most common model used in musculoskeletal modelling

applications [45], requires an alternate arrangement.

The equations that govern the motion of each element is derived from isometric and isotonic contractions of

muscle. The contractile component provides the active shortening of the muscle and is governed by force-

length and force-velocity relationships. Additionally, the dynamics of active state of the element can be

modelled using differential equations [280]. This model has been described as a “black-box model”, since the

equations for the contractile element, although at a high-level consistent with sliding-filament theory, provide
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Figure 6.1: Schematic of the Hill three-element model for the sarcomere, showing the arrangement of the

elements that represent components sarcomere physiology.

a relationship between input parameters and output results without directly representing the mechanism of

muscle force production [280].

The three-element model has been used to successfully predict the movement of muscle under various sce-

narios. However, some of the fundamental assumptions leading to the construction of the model are flawed

and it remains valid for only tetanised muscle. It must be modified further in order to describe single twitches

and wave-summation, and is unable to simulate yielding in muscles that are stimulated by low frequencies

during stretch [45]. The methods used for experimental evaluation are dependant on chosen assumptions.

Furthermore, the division of forces between contractile and parallel elements, as well as that of the strain

between contractile and series elements, is arbitrary. It has also been noted that the complex interaction of

force-length, force-velocity and activation dynamics may cause the Hill-model to be unreliable in complex

contractile conditions [280].

6.1.2.4 Comparative studies of micro-physiological models for muscle

Cole et al. [45] evaluated the transient force response of a Hill-based muscle-tendon model and a DMM

during stretches at different velocities. The results were compared to experimental data taken from a cat

soleus during iso-velocity stretches at maximal activation. The authors were able to accurately reproduce the

force-time and force-length response of the muscle at the set velocities using the Hill-model with a single set

of parameters. They did not succeed in doing similar using the DMM and it was determined that a single set

of parameters were not sufficient to describe the kinetic behaviour of muscle beyond the short-range stiffness

region at different velocities of stretch.

van den Bogert et al. [280] reviewed the methods for developing mathematical models to represent human

anatomy. They used both mechanistic (DMM) and phenomenological (Hill-based) models to describe the

iso-velocity dependence of muscle-tendon system of a maximally activated cat soleus. It was concluded that

the Hill-model was superior in its ability to predict muscle forces under different conditions using the same

model parameters. The Hill model was able to successfully simulate both slow and fast stretches with a

single set of input parameters, whereas the DMM was greatly inaccurate for fast stretches. However, Hill-

models were unable to reproduce the observed effect of muscle force decreasing below the isometric force

when lengthening occurs at submaximal activation. Overall, it was decided that the Hill-model is able to

reproduce experimental results, and is the better option to simulate accurate muscle behaviour.

Wu and Herzog [315] demonstrated that in some cases discrepancies arise in results produced by the DMM

when compared to the exact solution Huxley-model. The authors contend that, with respect to describing the
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fundamental characteristics of muscle contraction observed in experimental analysis, the cross-bridge model

remains unrivalled.

Further enlightenment on the differences between the Hill- and Huxley-models, from the perspective of

cardiac modelling, is provided by Peskin [218].

Direct modelling of the underlying histology of muscle samples allowed Sharafi and Blemker [251] to explore

the ability of muscle models to accurately describe passive tissue in shear. A representative cell unit, describ-

ing either a collection of fibre or fascicle bundles, was deformed in shear. It was found that the behaviour

of the models in terms of the overall shear stiffness of the modelled sample could differ considerably. Trans-

versely isotropic behaviour was exhibit by the fibre-level model, while models aimed at the fascicle-level

displayed transversely anisotropic behaviour.

6.2 Constitutive formulations of fibrous materials

Due to the presence of some similarities in the physiology of cardiac tissue (striated muscle) and skeletal

muscle, approaches and principles used from a continuum-mechanics and muscle-mechanics view-point are

often similar. Due to this and that some skeletal models are derivative works of cardiac models, a brief survey

of the cardiac models was conducted. The various descriptions for skeletal muscle in the literature were also

surveyed. This literature, along with that which makes critical analysis of these approaches, is appraised.

6.2.1 Cardiac, arterial and collegenous fibrous models

The seminal work on which many fibrous constitutive models are derived is that performed by Spencer in

1984. This model was developed further by Humphrey and Yin [116] and combined the features of phe-

nomenological and microstructural modelling to provide a unified continuum description of incompressible

pseudo-elastic tissues2 in which embedded fibres exist. The authors describe their aim as being to develop

a pseudo-SEF for fibrous materials from which the form is inspired by experimental data. These fibres are

considered to be non-interacting, with a fibre family having the same directionality and material description,

and contribute stiffness only when in a state of tension. This SEF was assumed to be additively decomposed

into homogeneous matrix and fibre components, with the fibre component representing the total strain en-

ergy of all fibre families and only the matrix having a hydrostatic contribution. The matrix was considered to

be a function of the first and second invariants of the right Cauchy-Green tensor, and the fibres were assumed

to be dependent on the deformation only through the definition of their stretch, also an invariant quantity.

The fibres only contributed to the material stiffness in their current direction. Formulation of a biaxial test

for a thin-sheet of material with two perpendicular fibre families lead to the formulation of three plausible

constitutive models for fibres, with one chosen on the basis of experimental data. The resulting framework

was used to describe the pleura, consisting of collagen and elastin fibres. The SEF for the matrix was chosen

to have an exponential dependence on the first invariant, while that of the collagen had an exponential de-

pendence on the fibre stretch. Similar material models were also used to represent myocardial tissue, with

the resulting constitutive model accurately reproducing experimental data.

2 These are viscoelastic materials that can be represented by a single material model using two different sets of material parameters

to describe the loading and unloading characteristics.
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The basic decomposition of the SEF and the form of the constitutive models for incompressible, anisotropic

fibrous materials developed by Humphrey and Yin [116] are regularly used in the literature. The exponential

form of the fibre SEF was used by Holzapfel et al. [107]3, Gasser and Holzapfel [82], van Oijen [290], Stålhand

et al. [260], Driessen et al. [58] in the development of arterial models, Driessen et al. [58], Baaijens et al. [9] in

describing collagen in vascular leaflets and Weiss et al. [306] in their model of the human medial collateral

ligament. Zulliger et al. [329] used a SEF, linear in engineering strain, to model fibres in arteries under the

influence of active vascular smooth muscle. Federico and Gasser [70], modelling articular cartilage, expressed

the fibre SEF in terms of a Taylor-series of the fibre stretch. Further development by Humphrey et al. [117]

has lead to a more complex description of the response of passive myocardial tissue which did not take the

form of any of their previously presented models. A SEF which couples the fibre and matrix contributions

was utilised by Weinberg and Kaazempur-Mofrad [304] to model mitral valve leaflets.

More advanced concepts of fibre modelling include the addition of cross-fibre terms, which is discussed by

Holzapfel et al. [107]. Consideration for multiple fibre families is made in [107, 290]. Gasser and Holzapfel

[82] included a strain-rate independent plasticity model to incorporate the effects of relative slip between

fibres under deformation and plastic hysteresis. Holzapfel et al. [107] also discusses the inclusion of residual

stresses or prestressing, important in the simulation of arteries, which was subsequently used by Driessen

et al. [58]. Fibres may be considered to be of finite volume if they form a large component of the overall

material volume. A framework for the inclusion of the concept of the fibre volume-fraction was presented

by van Oijen [290], and later used and discussed in [58, 9]. An alternate description of the volume-fraction

concept is provided by Federico and Gasser [70]. Zulliger et al. [329] weighted the components of the addi-

tively decomposed SEF by their cross-sectional area. Active muscle mechanics, accounting for muscle tone

and response to the deformation, and the length-tension relationship of individual contractile elements were

also introduced in [329]. In their development of a heart valve model, Li et al. [151] utilised a nonlinear,

anisotropic stiffness modulus where the elastic modulii were expressed by independent nonlinear functions

of the strain and the shear modulii calculated from these.

6.2.2 Skeletal muscle models

In the area of skeletal muscle modelling, Hill-based models have proved to be most popular in terms of

providing a mathematical description of muscle functioning [286]. Examples of their use in the development

of musculoskeletal models include the works of Pandy et al. [208], Pandy [207], Lloyd and Besier [158].

Hyperelastic continuum models based are regularly developed using the concept of additive strain-energies

for matrix and fibre contributions as described by Humphrey and Yin [116]. Martins et al. [170] demonstrated

how the definition of the muscle fibre contribution in [116] could be modified such that it fitted with the

physical definitions described by the Hill-model. This permits the inclusion of the force-length, force-velocity

relationships4 as well as the effects of activation in the constitutive relations for muscular tissue. This concept,

leading to the additive decomposition of the total stress tensor derived from a SEF, has since been used to

model the human biceps brachii [170], the pelvic floor [52, 171] and squid tentacles [272].

Spyrou and Aravas [258] forgo the use of a phenomenological model to represent muscle and tendonous

tissue of squid tentacles and a portion of the human hamstring, but do however include the force-length

3 Holzapfel et al. [107] also provides a comprehensive review of- and description of a framework for- fibrous hyperelastic materials.
4 It should be noted that the description of these relationships and numerical implementation of the Hill-model varies considerably

in the literature.
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and force-velocity relationships. A similar procedure was followed by Johansson et al. [133] in their model

of squid tentacles and simple pennate muscles. Alternate methods for the inclusion of active muscle con-

tributions, which do not rely specifically on Hill-elements, are provided described by Lemos et al. [149] in

the modelling a cat medial gastrocnemius, as well as in [24, 235]. In the above papers, the total stress tensor

is decomposed without any specific link between the fibre constitutive model and a SEF being described.

Röhrle [234], although utilising a free-energy function for both active and passive contributions, also did

not utilise phenomenological models in their work. More recently, complete SEF descriptions of muscle me-

chanics which forgo some of the assumptions made in [116] as well as phenomenological models have been

developed by Odegard et al. [197], Ehret et al. [62].

The literature does contain numerous examples of models created on the bases of completely different de-

scriptions of muscle tissue. The Huxley model, in combination with the DMM, has been utilised by Oomens

et al. [201] to simulate contraction of the rat tibialis anterior. A less conventional linked fibre-matrix mesh

model, which uses two separate meshes to represent the extracellular matrix and muscle fibres, has been

developed by Yucesoy et al. [322] to more accurately represent the interaction between constituents of the

myofibres and the surrounding matrix. Following from the work of Li et al. [151], Van Loocke et al. [286] de-

scribe a nonlinear transversely isotropic constitutive model of passive skeletal muscle using strain-dependent

Young’s modulii (SYM) thus negating the use of a phenomenological model. This model has since been im-

proved by incorporating the effects of viscoelasticity [288, 289].

Pertaining specifically to modelling of muscles in the HUA, Wilhelms-Tricarico [311] included the force-

length and force-velocity relationship in their continuum model of muscle contraction. As no phenomeno-

logical model was used, the fibre constitutive model was based on the stretch of the representative fibres. An

isotropic exponential SEF was used to represent the passive elastic components of tissue. Mention was made

of inclusion of fibre density, but no details were provided. A similar representation of the muscle force-length

relationships has been used by Wu et al. [317], however an additional passive contribution from the muscle

fibres was included. Baker [11] describe a force-length relationship based on the length-change of sarcomeres.

A Hill-model, representative of muscle sarcomeres, was also used by Huang et al. [111, 112, 113] to model

the GG of the tongue. Specifically, the GG was modelled using a nonlinear relation in the axial direction of

its constituent fibres. Further use of the Hill-model is made in by Kojic et al. [143] in a model of the uvula.

Notable in this work is that Kojic et al. also scaled the stress generated in the muscles by their volume fraction.

Another representation of muscles is that of the force effectors [263]. With this technique, muscles are repre-

sented as line segments connecting nodes, and forces are applied directly to the nodes of a FE model. In

some instances, muscles are modelled using a macro-scale representation of fibres that were positioned on

the edges of the FEM elements. Prescribed muscle forces, under the assumption of spatial uniformity, was

used by Fujita et al. [77], Vogt et al. [293], Vogt [292], Gérard et al. [85, 87], Perrier et al. [215]. Leading

from the description of motor-control mechanisms (discussed in some depth in section 7.1), an exponential

force-activation relationship, which is stated to describe the effects of the Hill-model series element (SE) and

contractile element (CE) [244], was used by Perrier et al. [214], Sanguineti et al. [244, 245] to produce active

muscle forces. Buchaillard et al. [29] made additions to this model to take into account the changing CSA of

the muscles and the force-velocity relationship. Phenomenological models can also be represented by force

effectors. The Artisynth project incorporates a Hill-model in their muscle model [263, 159]. Both active and

viscoelastic passive components of muscles were modelled by Dang and Honda [50, 51], Fang et al. [68] us-

ing a complex rheological model that incorporated a Hill-model. Perrier et al. [215] included active local

stiffening of the tissue surrounding contracting myofibres.
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6.2.3 Comparative studies of continuum-based implementations of muscle models

Van Loocke et al. [287, 286] provide a valuable discussion on the topics of the available experimental data

for passive skeletal muscle and the literature relevant to modelling it, both in terms of microstructural and

continuum models. Experimental data was obtained under quasi-static conditions, from which two material

models were developed and evaluated. A multi-parameter hyperelastic transversely isotropic model, depen-

dant on the stretch ratio in the fibre direction and the first invariant of the right Cauchy-Green tensor, was

derived from the work of Humphrey et al. [117]. This model was compared to a SYM model based on the

work of Li et al. [151].

It was determined that the Humphrey et al. SEF accurately fitted the experimental data in the fibre direction

up to 20% strain and in the non-fibre direction up to strains of 40%. The model was unsuccessful in predicting

muscle behaviour at 45˝ from the fibre direction. In contrast, the SYM model provided a good correlation to

the experimental data at strains of up to 40%, as well as in the direction 45˝ from the fibre orientation.

6.2.4 Discussion on the methods of modelling skeletal muscle

A review of the literature has determined that the use of a continuum approach in conjunction with SEFs

(be they active or only passive) is an overwhelmingly popular approach to modelling large deformations of

muscular tissue. This method allows for the incorporation of phenomenological models and can be used to

describe an arbitrary geometries with an arbitrary arrangement of muscle histology. However, the accuracy

of material response in cross-fibre direction remains questionable. Furthermore, for models such as that of

Humphrey et al. [117], there exist difficulties in the estimation of input parameters, although this could be

partially accounted for by the breadth of the experimental results obtained to date [286].

The direct application of nodal forces through force effectors provides an alternative method to modelling

active tissue to the continuum approach. The resulting material model appears to be simple to implement

and computationally inexpensive. However, they are strongly linked to the geometry of the FE mesh, which

provides further difficulties in the development of a geometric model. There also exists a disconnect be-

tween response of the muscle model and the underlying physiology of muscle tissue in terms of its local

deformation. The SYM method, the third alternative approach, uses model constants that have a physical in-

terpretation and are directly correlated to experimental data [287]. However, it has only been demonstrated

for transversely isotropic (1-fibre family) passive tissue. As the histology of the tongue is complex, there

exists the need for a completely anisotropic material model. Furthermore, the inclusion of muscle activation

within a SYM model not yet been demonstrated.

Regarding the simulation of the mechanism of force-production in the tongue, the Huxley and DMM are

not particularly popular for this purpose due to their complexity and level of detail. The Hill model, which

models muscle on a functional level and incorporates all of the major features of passive and active muscle

response, provides a good balance between model detail and complexity of implementation.

6.3 Muscle as a composite

Muscle tissue is composed of a largely homogeneous and isotropic bed matrix consisting of adipose and

interstitial tissue in which muscle fibres are embedded. Each group of muscle fibres is made up of several
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sub-units, of which the smallest functional unit is the sarcomere. Figure 6.2 depicts the arrangements of the

sarcomeres in a muscle fibre. By assuming that in a small control volume all sarcomeres belonging to a fibre

family behave identically, one can describe the local motion of the fibre by describing the motion of a single

sarcomere.

PE

SE CE

Tf Tf

Muscle fibre Myofibril Sarcomere

Figure 6.2: Physiology of a skeletal muscle fibre: Macro-scale (muscle fibre) to micro-scale (sarcomere). The

Hill three-element model, overlaid on a muscle fibre, represents the behaviour of a collection of

sarcomeres. The PE and SE are passive and the CE is responsible for the active reduction of muscle

length.

In producing a mechanical model for muscle, individual fibres are considered to have a negligible cross-

sectional area in comparison to their length. No restriction is placed on the number of muscle fibre families

present at each point in the muscle. This allows for the notion of crossing and interweaving muscle groups,

a histological feature found in the tongue. Adjacent fibre families are assumed to slide over each other, so no

cross-terms and direct interaction are modelled in the constitutive equations.

6.3.1 The Hill three-element muscle model

In section 2.5.1.1 it was mentioned that the sarcomere is the smallest physiological unit of muscle tissue. The

Hill three-element model, illustrated within the muscle fibre in figure 6.2 and described by Fung [78], is a

representation of muscle at a sarcomere level. Each of the elements represent a collection of different physical

components of the sarcomere.

It is assumed that, locally, all sarcomeres belonging to a muscle group behave identically. More particularly,

it is assumed that these sarcomeres undergo identical deformation, receive the same neurological input and

have the same force-generation capabilities as one another. Since the serial and parallel arrangement of

sarcomeres that comprise a muscle fibre behave identically, through homogenisation the net action of the

numerous components of varying physiological scales within the muscle fibre can be represented locally by

a single Hill element.

The Hill element used to model the composition of skeletal muscle, as adopted by Fung [78], Martins et al.

[170], comprises of three individual units with an arrangement and constitutive relation that characterises the

underlying physiology that it represents. Two of the elements, the SE and CE are in series with one another

and collectively in parallel with the parallel element (PE). Both the PE and SE are passive components of

the model and respond to the deformation of the surrounding tissue. The components of the Hill model

represent the following aspects of skeletal muscle tissue [78, 170]:

PE: Connective tissue and collegenous sheaths such as the perimysium and epimysium.

SE: Z-bands, titin-filaments, connective tissues and passive components of the actin-myosin complex.
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CE: Active components of the actin-myosin complex.

The PE accounts for the resting elasticity of tissue. A further contribution to the PE may be necessary, de-

pendant on the contraction or stress-strain history of the muscle due to residual coupling of the actin-myosin

complex. The difference between the properties of the whole muscle and the parallel component characterises

the properties of the contractile and series elements. It should be noted that the effect of the collegenous ten-

dons have been ignored. Muscles of the tongue (although catagorised as skeletal muscle) do not have tendon

components of any significance.

The SE captures the intrinsic nonlinear elastic characteristics of the sarcomere. Contributions to the elasticity

of this component may also include the non-uniform activation of myofibril filaments and non-uniformity of

the sarcomeres themselves. This element is known to have an exponential length-tension relationship [78].

The contractile force, which results in the active shortening of muscle, is generated by the CE in response to

a neural stimulus. It has zero tension at rest, and is capable of shortening when activated due to the sliding

action of the actin-myosin complex. An increase in tension in this component is developed by increasing

the number of active cross-bridges. It is required that the relationships that govern the response of the CE

capture the length and velocity relationships presented in section 2.5.2.3.

A detailed comparison between the model chosen for this work, which is presented in the following para-

graphs, and that in the literature is provided in appendices D.3 and D.4. Some initial observations concerning

the reinforcing properties of the passive muscle fibres, as well as the proportion of the tissue volume that they

occupy, are also included therein. Representative mathematical models for the components of the Hill three-

element model are presented in section 6.5.2. A discussion of the active components of the model is presented

in section 7.2.1, that is subsequent to the presentation of the model that governs neural input to the muscle

groups.

6.4 Muscle matrix

There are numerous models (e.g. [293, 111, 244, 86, 28]) that have been used to describe the isotropic skeletal

muscle matrix of the tongue, each with significantly different characteristics.

Martins et al. [170, 171] consider the muscle matrix to be a Fung-type hyperelastic material. This model is also

used in [116, 311]. The parameters for the muscle matrix, given in table 6.1, were chosen such that Young’s

modulus at zero strain and high strain, as approximated under uniaxial tension conditions, would be within

the range of values described in the literature.

Table 6.1: Material parameters for muscle and muscle matrix.

Muscle Matrix

Parameter ρ0 B1 A1

Units kg/m3 – kN/m2

Value 1060 0.625 1.652

The hyperelastic model used does not account for significant features of viscoelastic and high strain-rate ef-

fects [288, 289] nor directly the increased stiffness observed during compression tests of muscle with transverse-
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orientated fibres [286]. However, these simplifications can be justified as low strain-rates are expected in

the scenarios being modelled and the contraction of muscle increases its stiffness by a substantially greater

margin than the mentioned effects. The scenarios being modelled in this work have a limited number of

contraction cycles. Therefore, the viscoelastic and hysteresis effects will not have sufficient time to reduce to

the steady state which would be present in a real-world scenario of cyclic loading and contraction5.

6.4.1 1-d material model to represent external tissue

As with adipose tissue, simplified models of regions of the HUA require that the bedding tissue of skeletal

muscles be represented as a one-dimensional model. Since the Fung model was used to as the constitutive

model for muscle matrix, equation 5.12 was applicable to this material. The model parameters, shown in

table 6.2, were set such that the material stiffness matched that obtained from uniaxial tests for the parent

material. The Poisson’s ratio set to 0.5 as the tissue is incompressible. Figure 6.3 demonstrates that the 1-d

material model and the uniaxial stiffness of muscle matrix determined by a full constitutive model match

with sufficient accuracy.

Table 6.2: Parameters for 1-d model of muscle matrix.

True strain E0 a b

ε ě 0
6.2kPa

1.5 5.3

ε ă 0 2.4 4.35

´0.5 ´0.4 ´0.3 ´0.2 ´0.1 0 0.1 0.2 0.3 0.4
0
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1-d model 3-d model

Figure 6.3: Young’s modulus for 1-d muscle matrix

model. Data plotted against measured re-

sults from uniaxial FEM test.

6.5 Muscle fibres

The presentation of the constitutive model for active muscle fibres is decomposed into two parts. In the first,

section 6.5.1, the method of quantifying the volume of fibres occupying a control volume in muscle tissue

is presented. Section 6.5.2 details the mathematical description applied to each of the Hill elements used to

represent active skeletal muscle fibres.

5 Rodrigues et al. [232] noted that in their simulations of laryngoscopy, the limited experimental data they acquired was better

matched by a hyperelastic material model than a viscoelastic material for simulations of the order of 10s in duration.

PAGE 77



6 ‚ MUSCLE MODEL

6.5.1 Volume fraction

The concept of fibres occupying finite space within a control volume in muscular tissue was introduced in

section 5.2. This representation requires the quantification of the fibre volume fraction within each region

of the muscular tissue. Histological samples of tongue, such as those shown in figures 2.7 to 2.9, suggest

that the volume fraction of fat and interstitial space is relatively large and varies in quantity throughout

the muscle tissue. Furthermore, as noted in Nashi et al. [191], the quantity of adipose tissue present in the

tongue increases considerably with BMI. A brief survey of the estimated fibre volume fraction for the tongue,

extracted from various studies, is presented in table 6.3.

Table 6.3: Literature survey of skeletal muscle total fibre volume fraction
ř
f
φf for the tongue. In studies

where φAdipose is listed, the total fibre volume fraction is estimated as
ř
f
φf “ 1 ´ φAdipose.

Miller et al. [179] Humbert et al. [115] Liang [153] Lieber et al. [155]

0.44 ´ 0.64 a
0.74 b

0.9 c
0.87 ´ 1

d

Nashi et al. [191]

10 15 20 25 30 35 40 45 50 55
0.4

0.5

0.6

0.7

0.8

0.9

1

BMI

F
ib
re

vo
lu
m
e
fr
ac
ti
on

Anterior Posterior

a Tongue; muscle fibres + connective tissue; High statistical variation
b Tongue; value derived from fat volume fraction measured
c Tongue FEM model; uncited source
d Various muscles; healthy tissue

Based on the data described in the literature, the chosen parameter for the total fibre volume fraction for the

tongue model is
ř
f
φf “ 0.7. This value appears suitable for the average adult with a healthy BMI. The spatial

variation of the adipose tissue concentration in the tongue is not accounted for.

6.5.1.1 Local fibre volume fraction

Throughout the tongue and the other muscular anatomy presented in section 2.1, numerous muscle groups

weave and interact at a micro-histological level. As multiple fibre families occupy the same control volume,

the total fibre fraction has to be divided amongst the locally present muscle groups. Due to the lack of spatial
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data, the local volume fraction of each fibre family that occupies a position in space is equally split such that

φf “
ř
f
φf { f (6.1)

where the denominator f represents the total number fibre families (different to M, the total number of

muscles represented in the geometry) present at each point. The packing of fibres at a micro-scale varies

throughout the anatomy and equation 6.1 provides a first-estimate in lieu of better data to build a more com-

prehensive model. Figure 6.4 provides a visual description of the idealised packing that is assumed at the

micro-scale of muscular tissue.

(a) One fibre family (b) Two orthogonal fibre families (c) Three orthogonal fibre families

Figure 6.4: Idealised fibre packing scenario for multiple non-intersecting cylindrical fibre families within

a representative volume. Each of the muscle fibres are assumed to be of the same functional-

diameter.

The consequence of this representation is that the contractile force generated in regions where a large quantity

of fibre families are present will be less than those where few muscles intersect. For fibre families that are

parallel to one another this is a reasonable outcome as, in a control volume under ideal packing situation,

the CSA of each muscle must be reduced. Off-axis rotation of any fibre family depicted in figure 6.4 results

in a similar but shifted packing arrangement with the same total volume fraction of each fibre group in the

control volume. This indicates that, for fibres of the same size, there is no requirement of orthogonality for the

model to be valid. However, the simplified model is invalid when different size fibres are present or upon the

introduction of a fourth fibre family to the scenario represented by figure 6.4c where clearly the fibres aligned

in one direction would have to be divided between the two muscle groups. Histological sections shown

in figures 2.7 and 2.8, as well as [251], indicate that the muscle fibres must have a more complex packing

arrangement than is represented here, due to their bundling and non-uniformity.

6.5.2 Constitutive model of active skeletal muscle fibres

The material behaviour of muscle fibres is described in terms of a general, but undefined, SEF ψf that is

dependent on the stretch in the fibre direction. The resulting equation for stress, equation 5.4c, involves the

derivative of the SEF with respect to the fibre stretch; this term is interpreted as the one-dimensional tensile

force in the muscle fibre [171] as described in equation 6.3.
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As the Hill three-element model assumes identical behaviour of sarcomeres in a near vicinity to one another,

we use the terms sarcomere, myofibre and muscle fibre interchangeably as, locally, they all behave identically. In

this instance, locally is defined as at each independent representative computational point.

Using this phenomenological model, the total force in the muscle fibre can be additively decomposed into

the sum of the tension in the parallel and series element: that is to say that6

ψ1
f pλfq :“ Tf “ T

p
f pλfq ` T s

f pλf,λcq , (6.3)

where Tf is the nominal stress generated in the Hill element, with the additional relationship that the series

and contractile tension are equal

T s
f pλf,λcq “ T c

f

´
λc, 9λc,α

¯
. (6.4)

As the skeletal muscle to be modelled has no pennation, the fibre force vector (the magnitude of which is

given by equation 6.3) is completely aligned with the line of action of the muscle. However, given that

λf is a function of the deformation gradient, the generated stress in the Hill-element, and thus the local

contractile force generated by the muscle fibres, is in general spatially non-uniform. From equation 6.3, the

SEF governing the muscle model can be defined by [116, 170]

ψf :“

λfż

1

`
T

p
f pλfq ` T s

f pλf,λcq
˘
dλf (6.5)

and the fibre contribution to the Kirchhoff stress by

τ f “ λfTfnf b nf (6.6)

with the form of the structure tensor nf b nf indicating that zero dispersion of the fibres is present.

In [171], a multiplicative split of the contractile and series strain is assumed; that is, the total fibre stretch in

the two-element branch can be described as a composition of the stretch of the series element superimposed

on that of the contractile element:

λf “ λp , (6.7a)

λf :“ λsλc . (6.7b)

The split considered here is the one-dimensional equivalent of the deformation gradient decompositions

presented in equations 3.25 and 3.73. Using the implicit relationship given in equation 6.7b, the SE stress

equation T s
f pλsq “ T s

f pλf,λcq presented in equations 6.3 and 6.4 has been posed in terms of the fibre and

contractile element stretches by removing the second unknown stretch variable λs. Section 6.5.3 presents a

method of solving for the internal fibre variable λc using equations 6.4 and 6.7b.

6 Because the muscle tissue consists of a conglomeration of fast and slow twitch fibres (shown in figure 2.11), the total fibre stress

due to the recruitment of each fibre type is

φfTf

´
λf,λc, 9λc,α

¯
“ φf

fastTf
fast

´
λf

fast,λc
fast, 9λc

fast
,αfast

¯
` φf

slowTf
slow

´
λf

slow,λc
slow, 9λc

slow
,αslow

¯
(6.2a)

where the total fibre volume fraction is decomposed into the contributions from either fibre type

φf “ φf
fast ` φf

slow . (6.2b)

However, it is assumed that the LHS of equation 6.2a provides a sufficiently accurate representation of its decomposition, and thus

the actual decomposition does not need to be modelled directly. It represents the homogenisation of the properties of the different

fibre types. Knowledge of the recruitment strategy of each fibre type under different dynamic scenarios is therefore not necessary.
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The aforementioned relationships are presented in detail in equations 6.8a to 6.8c. Martins et al. [171] describe

the force in each element in terms of Tmax
0 , the maximum tensile force that can be attained in the element, and

experimentally determined scaling functions by

T
p
f pλfq “ Tmax

0 fp pλfq , (6.8a)

T s
f pλf,λcq “ Tmax

0 fs pλf,λcq , (6.8b)

T c
f

´
λc, 9λc,α

¯
“ Tmax

0 T s
0 fc

´
λc, 9λc,α

¯
. (6.8c)

Here, Tmax
0 “

Fmax
0

A0
represents the peak nominal isometric stress that can be attained in the muscle at resting

length [171]. The scalar value Tmax
0 T s

0 :“ T c
0 , motivated and described in chapter 7, gives the maximum

contractile stress that can be developed.

The parallel element representing the connective tissue and collagenous sheaths surrounding the fibre have

an exponential constitutive law7 [104, 171]

fp pλfq “

$
&

%
2aA pλf ´ 1q eapλf´1q2

if λf ą 1

0 otherwise .
(6.9)

The intrinsic elastic properties internal to the sarcomere are represented by the series element. It also has an

exponential stretch-tension relationship7 [104] described by [171]

fs pλf,λcq “

$
&

%
c1

´
ec2pλf´λcq ´ 1

¯
if λs ą 1

0 otherwise .
(6.10)

It should be noted that both the parallel and series elements function only when under tension and there-

fore provide no reinforcement under compression. The parameters used in the relationships governing the

passive components of muscle fibres are listed in table 6.4.

Table 6.4: Material parameters for muscle fibres, and the Hill model PE and SE.

Fibre PE fp SE fs

Parameter Tmax
0 a A c1 c2

Units kN/m2 – – – –

Value 668.8 a 8.568ˆ10´4 12.43 0.1 100

a The estimation of muscle properties is a difficult task [280].

A value of 220 kN/m2 is suggested by Wilhelms-Tricarico

[311] for the GH muscle. Fung [78] also documents the ten-

sile strength of the actin filament to be at least 2.2MPa. van

den Bogert et al. [280] note that values of between 20 and

100 N/cm2 have been used in literature, while Martins et al.

[170] quotes that the figure ranges from 0.16 ´ 1MPa. Kojic

et al. [143] used a figure of 2.2 ˆ 105 N/m2 in their model

of the soft palate. Röhrle and Pullan [235] utilised a value

of 0.3MPa in their human mastication model.

The contractile element has a dependence on its stretch, rate of stretch and the level of activation (tetany)

of the muscle. The force-length and force-velocity relationships are well defined in the literature (see [103,
7 Currently modelled as an elastic component, an alternative constitutive model might include the effects of viscoelasticity.
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91, 78, 133, 101, 154]) but exhibit discontinuous behaviour. In order to overcome this, Gaussian-type molli-

fier functions are proposed. These match the experimental data closely while being infinitely differentiable

functions and easier to use in algorithms. The governing equation for the contractile element is [171]

fc

´
λc, 9λc,α

¯
“ fL

c pλcq fV
c

´
9λc

¯
α pu ptqq (6.11)

where the length and velocity8 dependent functions are described by

fL
c pλcq “

$
’&

’%

ÿ

nL

gnL
pλcq if λmin

c ă λc ă λmax
c

0 otherwise
(6.12)

fV
c

´
9λc

¯
“

$
’’’’&

’’’’%

0 if 9λc ď 9λmin
cÿ

nV

gnV

´
9λc

¯
if 9λmin

c ă 9λc ă 9λmax
c

1.5 otherwise ,

(6.13)

or fV
c “ 1 in the completely quasi-static (non-dynamic) case.

A backward Euler time discretisation for the rate of stretch of the contractile element was assumed, giving

9λc :“
λc

t ´ λc
t´1

∆t
“

∆λc

∆t
. (6.14)

The Gaussian-mollifier function is defined as

gn pλq “

$
’&

’%

ˆ
Ane

´Bnpλ´µnqpn
˙ˆ

rλ´ µnsqn ´ Rqn
n

˙sn

if |Rn| ´ |λ´ µn| ą 0

0 otherwise .
(6.15)

In equation 6.15 the terms in the first bracket define the shape of the curve in most of the region of interest,

while the terms in the second bracket forces the function towards zero at a selected radius from a chosen

epicentre so that the function is closed. The condition prescribed in equation 6.15 is crucial as the function

has a zero-tangent at the cut-off radius but is non-zero beyond its extents.

Table 6.5 lists the parameter values used in the above equations. These parameters were tuned according to

data and functions described in literature.

Figure 6.5a illustrates the correlation of equation 6.12 to the force-length data described in Herzog and Ait-

Haddou [101] (which is identical to that shown in Gordon et al. [91]), while figure 6.6a shows the degree to

which equation 6.13 matches data from Lieber [154]. Some newer models, such as those used by Ehret et al.

[62], provide more accurate approximations to the experimental data than those to which comparison of this

model was first drawn.

6.5.3 Internal equilibrium: Solving for fibre element stretches

In sections 4.2 and 4.3, the solution methodology of the global equilibrium equation was presented. As only

equation 6.3 is considered, the satisfaction of global equilibrium does not ensure that the each local Hill

three-element system that is coupled to, but discontinuous from, the global problem is in equilibrium. There

8 Regardless of the constitutive model used for the muscle matrix, active muscle tissue is often classified as a viscoelastic media due

to the temporal dependence of this term.
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Table 6.5: Material parameters for muscle fibres, and the Hill model CE.

Parameter CE fL
c CE fV

c

n 1 2 3 1 2 3 4

µ 0.8 1.3 1.325 -0.75 0.4 2.3 0.45

p 2 2 1 2 4 0 4

A 0.475 0.1 4830.635 3ˆ10´5 2.5ˆ10´4 5ˆ10´4 1662.25

B 90 10 3 0.01 0.01 0.5 2

R 1 1 0.75 10 6 4 0.5

q 4 2 4 2 2 2 6

s 8 8 8 2 2 2 2

λmin
c 0.5 9λmin

c -10

λmax
c 2 9λmax

c 0.5

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2
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0.8
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f
L c
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(a) Comparison with experimentally obtained relationship [101]
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(b) Comparison with computational models used in literature

[208, 143, 171, 23]

Figure 6.5: CE length relationship.

remains the need to ensure that the fibre stress equilibrium condition given in equation 6.4 is satisfied at each

global equilibrium state. The achieve this total equilibrium state, a staggered method is employed to solve

the set of local tλcu for a prescribed field variable u and resulting local variable tλfu.

As λf is derived directly from the field variables, the remaining unknown to be solved for in each decoupled

local problem is λc. The algorithm used to solve for local equilibrium in the active Hill element branch is

a bracketed safe-search Newton/bisection method derived from that described by Press et al. [224]. It has

proved to be a robust technique that is well-suited to solving the highly nonlinear local residual equation. It

provides a measure of algorithmic stability as the relationships describing the contractile element are, under

certain circumstances, highly sensitive to perturbations.

Assuming a fixed value of λf as determined from equilibrium of macro-problem, the scalar function that is

derived from equation 6.4 and minimised using the hybrid method is given as

Rf
´
λc, 9λc

¯ ˇ̌
ˇ̌
λf,α

“ fs pλf,λcq ´ T s
0 f

L
c pλcqfV

c

´
9λc

¯
α pu ptqq Ñ 0 (6.16)
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Figure 6.6: CE velocity relationship.

and with a Jacobian defined by

BRf

Bλc
“

Bfs

Bλc
´ T s

0

˜
BfL

c

Bλc
fV

c ` fL
c

BfV
c

B 9λc

B 9λc

Bλc

¸

α . (6.17)

The first term can be evaluated using the definition given by equation 6.10,

Bfs

Bλc
“

$
&

%
´c1c2e

c2pλf´λcq if λs ą 1

0 otherwise
(6.18)

while the derivative of the CE length and velocity functions can be calculated using

BfL
c

Bλc
“

ÿ

nL

BgnL
pλcq

Bλc
,

BfV
c

B 9λc
“

ÿ

nV

BgnV

´
9λc

¯

B 9λc
(6.19)

where seen appropriate from the fundamental description of the functions presented in equations 6.12 and 6.13.

The first derivative of the Gaussian-mollifier function is

Bgn pλq

Bλ
“

$
’’’’’’’’’’’’’&

’’’’’’’’’’’’’%

ˆ
Ane

´Bnpλ´µnqpn
˙ˆ

´pnBn pλ´ µnqpn´1

˙
if s “ 0, |Rn| ´ |λ´ µn| ą 0

ˆ
Ane

´Bnpλ´µnqpn
˙ˆ

pλ´ µnqqn ´ Rqn
n

˙sn´1

ˆ

ˆ
pnBnR

qn
n pλ´ µnqpn´1 ´ pnBn pλ´ µnqpn`qn´1

` qnsn pλ´ µnqqn´1

˙
if s ‰ 0, |Rn| ´ |λ´ µn| ą 0

0 otherwise .

(6.20)

Figure 6.7 shows the first derivative of the length and velocity functions. Although the derivative of the force-

length function is smooth in the usual region of operation for the models used in this work, the force-velocity

function has a highly nonlinear first-derivative in the positive portion of the range with a large gradient

change near the y-intercept. This could result in poor convergence properties of equation 6.16, but in practise

this has not occurred when using the hybrid Newton/bisection method.
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Figure 6.7: First derivatives of functions describing CE length and velocity relationships.

From equation 6.14, the derivative of the contractile velocity with respect to the contractile stretch at the

current time is simply

B 9λc

Bλc
“

1

∆t
. (6.21)

For muscles that are inactive or have become deactivated due to over-extension or over-contraction, by defi-

nition

λc
ˇ̌
α“0

:“ λc
ˇ̌
λcąλmax

c
:“ λc

ˇ̌
λcăλmin

c
:“ λf Q λs “ 1 . (6.22)

The history for the contractile element length is critical for the correct calculation of 9λc and so the evolution

of the CE stretch must be tracked even when the muscle is not active or the local fibre bundle deactivates.

Rewriting equation 6.16 in terms of an update increment, the residual for a given pλc “ λc
t´1 ` ∆pλc

t
where

λc
t´1 is the CE stretch at the previous equilibrium solution is given by

Rf
´

pλc

¯
“ fs

´
λtf ,

pλc

¯
´ T s

0 f
L
c

´
pλc

¯
fV

c

´
∆pλc,∆t

¯
α puq . (6.23)

Using algorithm 1, it is possible to solve for the CE stretch update ∆pλc
t

to attain local equilibrium between

the SE and CE. Figure 6.8 illustrates the procedure of bracketing the root of the equation and decreasing the

distance between the brackets as trial solutions closer to the root are found. An event of solution divergence

in the preferred Newton-method is depicted in the diagram. In this scenario, the algorithm switches to a

bisection method that moves one of the brackets and recommends a restart position for the Newton algorithm

on the next iteration of the inner solver loop.

Although the hybrid algorithm is robust, it is possible that the solution may be so highly nonlinear that

the bracketing process may falsely skip over the position of a root and may present a case where no root is

found. Such a case should be dealt with using an even more robust, and likely more costly algorithm. A

further potential complication which is not accounted for in this algorithm is the existence of multiple roots.

However, for the purposes of this work, algorithm 1 worked as expected as long as control over the global

displacement solution step was maintained through the use of load and step limiting methods.
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Algorithm 1 Calculate λc “ λt´1
c ` ∆λc for internal stress equilibrium at time t using safe-search hybrid

Newton/bisection method derived from Press et al. [224].

Require: λf
t´1,λc

t´1,∆λc
t´1,αt´1 Ź Values from previous time-step

Require: ut,∆t,λf
t Ź Values from the current time-step global solution and neural algorithm

Calculate: αt “ αt
`
αt´1, ut,∆t

˘
Ź Determine muscle activation levels

Choose: ∆pλc
˚

Ź Uncertainty of initial value of ∆pλc
a

∆pλc
1

“ ∆pλc
t´1

´ ∆pλc
˚
,∆pλc

2
“ ∆pλc

t´1
` ∆pλc

˚
Ź Calculate initial brackets

Rf
1 “ Rf

´
∆pλc

1
¯
,Rf

2 “ Rf
´
∆pλc

2
¯

Ź Calculate function values at brackets using equation 6.23

while Rf
1 ¨ Rf

2 ą 0 do Ź No root between brackets

Update initial bracket positions according to table 6.6 Ź Increase bracket size until root is enclosed

end while

if Rf
1 ă tol then ∆λtc “ ∆pλc

1
Ź Bracket is located on the root

else if Rf
2 ă tol then ∆λtc “ ∆pλc

2
Ź Bracket is located on the root

else Ź Brackets enclose root. Use Newton / bisection method to solve for root.

Set up bracketing conditions and initial guess

∆pλc
h

“ max
´
∆pλc

1
,∆pλc

2
¯
,∆pλc

l
“ min

´
∆pλc

1
,∆pλc

2
¯

Ź Record high and low bracket values

Rf
2 “ max

´
Rf
1,Rf

2

¯
,Rf

1 “ min
´

Rf
1,Rf

2

¯
Ź Orient search such that Rf

1 ă 0

∆λc
t “ 1

2

´
∆pλc

l
` ∆pλc

h¯
Ź Choose initial values for the root search

Perform search for root while residual is unacceptable

while Rf “ Rf `
λc

t´1 ` ∆λc
t
˘

ą tol do Ź Not converged on root. Calculate residual using equation 6.23

R1f “ R1f `
λc

t´1 ` ∆λc
t
˘

Ź Calculate Jacobian using equation 6.17

if pp∆λc
t ´∆pλc

h
q ¨ R1f ´ Rfq ˆ pp∆λc

t ´∆pλc
l
q ¨ R1f ´ Rfq ą 0 then Ź Newton method overshoots brackets

∆λc
t Ð ∆pλc

l
` 1

2

´
∆pλc

h
´ ∆pλc

l¯
Ź Use bisection method for this inner iteration

else

∆λtc Ð ∆λtc ´
Rf p∆λtcq

R1f p∆λtcq
Ź Use Newton method for this inner iteration

end if

Tighten brackets around solution

if f ă 0 then ∆pλc
l

“ ∆λtc Ź Shift lower bracket

else ∆pλc
h

“ ∆λtc Ź Shift upper bracket

end if

end while

Check for element stretch violations (equation 6.22) and consequent muscle deactivation

if λt´1
c ` ∆λtc ą λmax

c then Ź Over-extension of CE

∆λtc “ λtf ´ λt´1
c Ź CE deactivation: fc “ 0

else if λt´1
c ` ∆λtc ă λmin

c then Ź Over-compaction of CE

∆λtc “ λtf ´ λt´1
c Ź CE deactivation: fc “ 0

else if
λtf

λt´1
c ` ∆λtc

ă 1 then Ź Over-compaction of SE

∆λtc “ λtf ´ λt´1
c Ź SE deactivation: fs “ 0

end if

Update values for current time-step

λtc “ λt´1
c ` ∆λtc

end if

a The degree to which λc is expected to change relies on too many variables to accurately and reliably predict whether the CE will

extend or contract, even when muscle contraction (αt ą αt´1 ě 0) is specified.
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Rf “ 0

Rf
´
λf,λc, 9λc,α

¯ ˇ̌
ˇ
λc“λc

t´1
´∆pλc

Rf
´
λf,λc, 9λc,α

¯ ˇ̌
ˇ
λc“λc

t´1
`∆pλc

Rf
´
λf,λc, 9λc,α

¯

Figure 6.8: The safe-search Newton/bisection method.

Table 6.6: Initial hybrid-method bracket updates using a search acceleration factor A.

Case Update

Rf
1 ą 0 and Rf

2 ą Rf
1 and ∆pλc

1

ą ∆pλc
2

∆pλc
2

“ ∆pλc
1

` A∆pλc
˚

Rf
2 “ Rf

´
λc

t´1 ` ∆pλc
2
¯

Rf
1 ă 0 and Rf

2 ă Rf
1 and ∆pλc

1

ą ∆pλc
2

Rf
1 ą 0 and Rf

2 ą Rf
1 and ∆pλc

2

ą ∆pλc
1

∆pλc
2

“ ∆pλc
1

´ A∆pλc
˚

Rf
2 “ Rf

´
λc

t´1 ` ∆pλc
2
¯

Rf
1 ă 0 and Rf

2 ă Rf
1 and ∆pλc

2

ą ∆pλc
1

Rf
2 ą 0 and Rf

1 ą Rf
2 and ∆pλc

1

ą ∆pλc
2

∆pλc
1

“ ∆pλc
2

´ A∆pλc
˚

Rf
1 “ Rf

´
λc

t´1 ` ∆pλc
1
¯

Rf
2 ă 0 and Rf

1 ă Rf
2 and ∆pλc

1

ą ∆pλc
2

Rf
2 ą 0 and Rf

1 ą Rf
2 and ∆pλc

2

ą ∆pλc
1

∆pλc
1

“ ∆pλc
2

` A∆pλc
˚

Rf
1 “ Rf

´
λc

t´1 ` ∆pλc
1
¯

Rf
2 ă 0 and Rf

1 ă Rf
2 and ∆pλc

2

ą ∆pλc
1

6.5.4 Linearisation of Hill three-element components

The material-dependent contribution to the stiffness modulus in equation 5.5c from the muscles is described

by the scalar function

ψ2
f pλfq “

BTf

Bλf
“

BT
p
f pλfq

Bλf
`

BT s
f pλf,λcq

Bλf
(6.24a)

“ Tmax
0

ˆ
Bfp

Bλf
`

Bfs

Bλf

˙
. (6.24b)

Although equal, the SE nominal stress is preferentially utilised over the CE as the functions governing this

element are less computationally intensive than that of the CE.

The slope of the parallel function with respect to fibre stretch is determined from equation 6.9 to be

Bfp

Bλf
“

$
&

%
2aA p1 ` 2a pλf ´ 1qq eapλf´1q2

if λf ą 1

0 otherwise
(6.25)

while the implicit relationship of the series function derivative with respect to fibre stretch, derived from

equation 6.10, is

Bfs

Bλf
“

$
’&

’%

c1c2

ˆ
1 ´

Bλc

Bλf

˙
ec2pλf´λcq if λs ą 1

0 otherwise
(6.26)
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as from equation 6.7b, λc “ λc pλf,αq. To solve for the derivative of contractile element stretch with respect

to fibre stretch, λc is determined at perturbed values of λf using the internal equilibrium equation 6.16 and a

second-order central difference method9

Bλc

Bλf

ˇ̌
ˇ̌
λf,α

“
f pλf ` δλfq ´ f pλf ´ δλfq

2δλf
(6.27)

is used to determine the derivative. The perturbation was specified as δλf “
λf

100
.

6.6 External muscles

Since the DG, SH, SG muscles insert into the body of the tongue, the portion of the muscles that are within

the tongue are treated as internal fibres whilst acknowledging that both the internal and external components

collectively constitute the extrinsic muscle group. The action of external muscle regions are incorporated

into the geometry through the traction boundary conditions described in section 3.7. The insertion region

on the boundary, Γtf
0 , on which the muscles act define the interface where the external fibres transition to

internal fibres. X I in equation 3.102a defines the insertion points on this transition surface. The traction

exerted by any external muscle is represented by equation 3.106 with the nominal stress in the fibre defined

by equation 6.3. The values of text
t , text

f are continuously updated as the displacement solution is updated,

ensuring that the displacement-dependent load is consistently linearised.

6.7 Discussion of convergence and stability of the muscle model

The following observations were made with respect to the use of the muscle model for the simulation of test

cases, as well as the muscles in the HUA:

Convergence: Quadratic convergence of the Newton-Raphson algorithm is attained if the geometric and ma-

terial parameters are simple, such as activation of a single muscle embedded in a regular computational

domain. However, complex scenarios may result in a superlinear convergence rate. An explanation for

this behaviour is that the fibre model is very sensitive to the solution, as well as material and geometric

parameters governing equilibrium. The local interaction of multiple fibre families is complex and the

staggered global-local algorithm is not suited to these cases. It therefore takes a number of Newton

iterations for a local equilibrium to be established between contracting muscle groups.

Stability: It is possible to produce a bifurcation problem where the solution is unstable. Any scenario where

antagonistic muscle groups are simultaneously active and producing a force of the same order of mag-

nitude may fit into this category. For example, two axially-aligned muscles of the same properties and

cross-sectional area acting on opposite sides of a common interface should result in the interface not

moving, but is very sensitive to perturbations in the generated solution. In these cases, the unstable

equilibrium solution is the correct solution. A better load and solution limiting procedure, as well as

more accurate computational and numerical algorithms, must be implemented to cope with such a

scenario.
9 A more computationally expensive fourth-order central difference method was also tested, but no significant gain in accuracy or

convergence rate of the global or local solution was observed.
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Computational expense: The muscle model described here can be very computationally expensive. The lo-

cal or inner problem, namely that of equation 6.16, must be solved for each displacement update (and

numerous times if a linesearch algorithm is employed). It must be solved several more times when

calculating the tangent stiffness contributions in equation 6.27. Each of these involve the evaluation of

numerous Gaussian-mollifier functions, although the incorporated cut-off radius does assist in reduc-

ing the number of their evaluations.
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Achieving efficient task-based motor control in a system is a complex matter. The motor equivalence problem,

first formally described by Bernshteı̆n [16], maintains that there exists no one-to-one map between the motor

coordination problem and the motor solution to a task. Simply stated, in a multiple degree-of-freedom sys-

tem, there is more than one way to coordinate muscle movements in order to achieve a desired motor-driven

goal. In a body of intricate construct, the problem complexity is increased as not only do physical DOFs

representing locations catering for bending and rotation exist, but also kinematic DOFs that introduce flexi-

bility in the velocity state. Although this is the case, during early childhood development we learn the muscle

synergies required for lifelong coordinated movement and function. Muscle synergies, as defined by Ting and

McKay [278], are the “pattern of relative levels of muscle activation”. It has been suggested that movements

are a result of a combination of muscle synergies invoked through muscles controlled by the central nervous

system [278, 277].

In this chapter, we address the issue of neural control in two steps, in which the model describing the mech-

anism for muscle activation is presented alongside a neural control model. The neural model is decomposed

into two parts, the first of which is the definition of neural stimulus in the context of the muscle activation

model. The second part is a neural control model that governs the selection of active and inactive sets of

muscles, that is the muscle synergies required to complete a desired task. This model is devised to overcome

the difficulties arising from the need to produce a configuration for soft tissues in the presence of geometric

and material complexities, as well as traction forces that are not known a priori.

7.1 Models and algorithms for muscle activation and control

As noted by Sanguineti et al. [245], the main issue in modelling the tongue musculature is that “no direct

empirical evidence exists on which to identify the organization of control signals to spatially distributed

muscles”. That is to say that the activation patterns for the individual functional muscle groups in the tongue,

and which are required in order to perform some task, have not yet been fully documented. Therefore, control

algorithms have been developed to circumvent the lack of experimental data. Different fields of research

classically use differing approaches to describing the excitation of muscle tissue. Here, an overview of the

methods available for consideration are presented.
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7.1.1 Electro-potential and state equations for activation

For the modelling of the heart physiology, a detailed description of the electrophysiology is required in order

to accurately simulate the propagation of the electrical signal from the nerves to the tissue. This is important

to capture as the basic pulsatile motion of the heart that is produced by the rhythmic excitation of cardiac

muscle fibres propagating outwards from the source of innervation.

Clayton et al. [44] provide a detailed review of the methods routinely used to calculate the spatially vari-

able potential difference (electrical voltage) that drive muscular contraction. The implementation of these

models, namely the bidomain and monodomain equations, is not trivial and requires numerous physiologi-

cal parameters as input. Recently Röhrle [234] developed an electro-potential description of skeletal muscle

contraction using the bidomain equations to govern each motor-unit controlling numerous muscle fibres. An

additional model was utilised to determine the ion concentrations in the muscle which were then correlated

to the muscle activation level by describing the number of active cross-bridges during and after contraction

cycle.

In contrast, activation models more aligned with the implementation in this work are those that use a discrete

signal to directly drive a Hill-type model. These signals are assumed to instantaneously propagate through

space and can therefore be used as a direct input to control the muscles without the need for an intermediate

model. These models assume a multiplicative split in the functions governing the contractile force, with

one term representing the activation level. Direct prescription of the activation was used in application by

Stavness et al. [263] in a hybrid jaw-tongue-hyoid model, Röhrle and Pullan [235] to control the muscles

of the masseter in a lower jaw model, Kojic et al. [143] in a model of the soft palate, d’Aulignac et al. [52]

in a pelvic model, Blemker et al. [24] in a model of the biceps brachii and the tongue models of Wilhelms-

Tricarico [311], Fujita et al. [77], Wu et al. [317], Baker [11]. Further constitutive models that make use of this

decomposition include that of Odegard et al. [197] and Spyrou and Aravas [258].

To link the concepts of neural excitation and muscle activation, Pandy et al. [208], Pandy [207] describe

a first order differential equation that governs the build-up of the muscle activation level. Such a model

captures the delay between muscle excitation and activation, approximating the chemical (ionic) changes in

the tissue. Detailed later, this model has been used to simulate jumping [208, 207], jumping and walking

[207] in musculoskeletal models, as well as continuum models of the brachialis [170], the pelvis [171] and in

this work.

As an alternative, cross-bridge modelling has been used by Williams [312] in their implementation of the

Huxley-model of muscle contraction. Zahalak and Ma [324] included the rate-dynamics of calcium uptake

and bonding in their activation model for the Huxley-model. Murtada et al. [187] also used the number of

active cross-bridges as a scaling factor in their active constitutive model. Ehret et al. [62] utilised an activa-

tion parameter in their model, but assume a more complex relationship between the active portion of the

constitutive model and the activation parameter. This method allows for a kinematic interpretation of this

parameter.

7.1.2 EMG data as input to computational models

The experimental data attained from EMG studies provides insight into the activity of muscles used to per-

form a specified task. By defining some correlation between data extracted from these studies and the acti-
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vation level, the EMG data can be used as a direct input into computational models. Lloyd and Besier [158]

produced an EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.

Filtered EMG data was used as input to a nonlinear activation function which, in conjunction with a Hill-type

muscle model, was used to describe muscle forces.

Huang et al. [111, 112, 113] developed a constitutive model for the CE that describes the contractile stress

as a linear function of the contractile strain. The contractile stress was also considered directly proportional

to the stiffness and number of active cross-bridges, which in turn were inferred from the EMG level. This

experimental data was further correlated to the epiglottal pressure, making the GG response proportional to

the assumed airway pressure. It also accounted for the different response during the sleep and awake states

of the subject. It was assumed that fully awake, the number of attached cross-bridges increases continuously

as the pressure decreases in the airway, thus maintaining patency. During sleep the rate of cross-bridge

binding decreases, reducing the reflex mechanism that maintains the airway open.

7.1.3 Forward and inverse simulation

Detailed multi-body musculoskeletal models have been developed on the basis of rigid-body dynamics. An-

thropomorphic data is collected to recreate an anatomically accurate model of a system consisting of rigid

elements, which represent bones, and active deformable elements representing muscles. There exist vari-

ous methods to describe the dynamics of these systems, some general examples of which are provided in

Murray-Smith [186], Otten [204]. The works of Delp et al. [57], Prilutsky and Zatsiorsky [225], Neptune et al.

[192] demonstrate that this class of model has application in gait, surgical and athletic performance analysis

[57].

In forward kinematic models, prescribed internal forces and torques are provided as an input from which to

calculate the motion of the system. The converse occurs in inverse kinematics, where the internal forces and

joint torques are calculated from experimentally measured displacement and angle data. This data consists

of both forces applied to the system (reaction forces) and the joint angles. These internal forces can then be

resolved into a plausible set of muscle activations that constitute the neurological impulses to the controlling

muscles. Muscle contraction in the model of Delp et al. [57] is governed by first-order differential equation

relating the muscle activity to the neural signal.

A major issue that must be resolved in the both approaches is that of muscle redundancy. Due to the biological

complexity of the modelled system, the number of input variables (namely the muscles being controlled) is

often larger than the number of unknowns (joint angles and forces), leading to an indeterminate system of

equations. The addition of further constraints, in the form of metabolic cost minimisation (work and fatigue

performance) [192, 225], assist in this regard.

Recently, inverse simulation using a forward-dynamics model was introduced by Stavness [264] (also docu-

mented in [159]) into a FEM model of the tongue. Recognising the muscle activations as unknown quantities,

the potential function to be minimised included a term relating to the goal movement with constraints on

the unknown muscle activations. This required that the internal forces be decomposed into passive and

active components, and leveraged the linear relationship between the force generated in the CE of the Hill-

model and the muscle activation level. The muscle redundancy problem was solved using an advanced

optimisation algorithm [61]. Using this technique, very good spatial-tracking characteristics in the tongue

model, constructed with many functional motor units, was achieved. Forward simulation with two optimal-
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ity conditions has been used by Wang et al. [301] to deduce the activation of muscle groups corresponding to

prescribed motions of the tongue.

7.1.4 The EPH and the λ-theory

The equilibrium point hypothesis (EPH), as described by Bizzi et al. [22], is a hypothesis developed by Felds-

man in 1966 suggesting the way that the CNS generates movement in the body. In summary, it was hy-

pothesised that, with specific reference to articulatory joints, posture is attained through the equilibrium of

antagonistic muscle groups that have a spring-type nature and length-dependent characteristics. To initiate a

change in posture, the CNS is assumed to change the relative activation levels that have maintained the cur-

rent equilibrium position, thus leading to the development of a new equilibrium position. Although the ideas

for the EPH were derived from behavioural experiments, it has since been in part confirmed by measured

neurological data [22].

Two models of the control mechanism were proposed by Feldsman, one of which is the λ-theory that is pop-

ularly applied in the field of speech research. In this model, the feedback mechanism for muscle activation

is described as a function of the difference between the muscle length and a control parameter, λ, which

describes some threshold length. This control parameter can, in turn, be a function of the desired equilib-

rium position. In this way, the model describes reflexive contractions of the muscles due to a shift in the

equilibrium configuration with respect to the desired configuration: the muscles act like “tunable springs”.

For each muscle group, the overall force developed is a described a family of length-tension curves, each of

which is characterised by the threshold length [244]. Although the theory has undergone much scrutiny and

debate [92, 129, 71], some doubts as to the validity of the λ-model and the applicability of it and the EPH exist

[105, 215]. Further criticism of the λ-theory is given in [22] and all control models in general in [203].

In their model of the tongue, Sanguineti et al. [244] used the λ-theory as a control mechanism for the intrinsic

and extrinsic muscles of the tongue. An activation function identical to that described in [22] was utilised and

the norm of the muscle force vector was minimised to deal with muscle redundancy. The control parameters

were defined in terms of a smaller set of control parameters, as well as the jaw and hyoid displacements.

The model was later advanced by Sanguineti et al. [245], wherein a rate-dependent term was introduced into

the activation model to account for delays in muscle reflexes and muscle damping. The control parameters

were determined by correlating the movement of the tongue to data extracted from an imaging process. A

muscle-control model of the same description had been used previously by Perrier et al. [214] to model jaw-

articulation and Buchaillard et al. [29] to control the tongue for the purpose of speech formation. The tongue

model of Perrier et al. [215] includes a control model consistent with that described in [244]. Other models

that make use of the EPH include [28, 264].

7.1.5 The muscle control workspace and equilibrium point map

As an alternative to the EPH-based models, Dang and Honda [50] proposed the concept of muscle workspace.

This concept is a follow-on from Honda [108] who describe the equilibrium position as the sum of EMG vec-

tors and their mapping onto the muscle force space. In this method, the effect of activation of each individual

muscle on the displacement of a single observation point from its current equilibrium position is probed.

A set of displacement vectors are used to determine which muscles contribute positively towards the goal

motion. From this map, a plausible set of muscle activations can be developed as a linear combination of the
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individual contributions. Developing this set is an iterative procedure, with a revision of the displacement

vectors required as the trajectory of the observation point is realised. A optimal activation combination is

found by minimising a cost function, defined by the summation of the norm of the difference between the

optimal trajectory of the displacement resulting from the activation of each individual muscle component.

Although this methodology proved successful for their work, the authors conceded that zero contraction

of agonist-antagonist muscle pairs was assumed and that the inclusion of multiple observation points was

therefore not tested. Advancement of these ideas, including the co-contraction of muscle pairs, was discussed

by Dang and Honda [51].

7.1.6 Learning algorithms

Neptune et al. [192] use simulated annealing as an optimisation algorithm in a forward kinematic model

of the lower limbs, which solves for the muscle excitations to minimise the error corresponding to experi-

mentally derived displacement data. A similar result was achieved by Ibrahim et al. [120], where a genetic

algorithm (GA) was utilised to determine the active properties of the muscles controlling the angle of the

knee joint. Ibrahim et al. [121] later used a multi-objective GA to optimise the number of constraints on the

model thus reducing its complexity.

Baker [11] developed a neural network to learn the muscle activations required to attain a prescribed tongue

posture. The model learned, under static conditions, the displacement due to contraction of individual and

combinations of muscles. Special techniques involving the projection of parameter spaces were used to en-

able the reduction of the parameter search-space. The neural network, in association with statistical models,

was then able to predict the combination and activation level of muscle groups to obtain the desired tongue

posture.

7.1.7 Discussion on muscle control models

Active constitutive models such as that described by Huang et al. [111], are ideal for use in research of sleep

disorders as they are simple to integrate into a model and directly correlate experimentally obtained infor-

mation to the muscle response. However, the question of robustness of such a model exists:

1. Under which physical conditions does the model remain valid?

2. If the physical conditions are altered, can the model be adapted to account for the change in environ-

ment?

3. How does the activity of the other muscles, which may not be experimentally corroborated, relate to

the same environmental factors?

It is these issues that drive the need for adaptive models such as the others that have been described. Ulti-

mately, the neural model implemented in this work is of the forward-kinematic type, which has some issues

of its own [203]. To ratify this choice, a brief commentary on some of the predicted issues with implementing

the alternative approaches is presented.
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Inverse dynamics: The driving force behind muscle activation is the airway pressure that is applied over

the surface of the tongue. This same surface is one that we assume to remain stationary during the course

of application of the load. This zero-constraint of the traction-surface would lead to a trivial solution in the

equations of motion, and therefore similar in the predication for muscle activation. Infinite solutions exist to

the state of isometric contraction as the stress-state depends on the muscle activation level.

EPH/λ-model: The primary issue with utilising the λ-model is that, in its current form, it and continuum

based approaches to muscle modelling appear incompatible. The inconsistencies between the two models

and implementation difficulties are summarised as follows: The view of the length-scale of the representa-

tive model for muscles does not match, in that the λ-model assumes that fibres are macro-scale elements.

Although stated in [244] that it remains consistent with the Hill-model, the constitutive equation for the

contractile force in the λ-model lacks a direct link to the rate-based dynamics (force-velocity relationship)

inherent to muscular tissue. Values characterising the representative lengths of the muscle do not exist in

the continuum-based approaches. A length scale is required for the activation function used for the λ-model

employed by Sanguineti et al. [245], amongst others. Furthermore, a functional CSA is required to link the

measured peak muscle stress and the force generated in the model’s muscle elements. Due to the arbitrary ar-

rangement of the collection of fibres that constitute a muscle, these values cannot be directly attained without

further assumptions. Lastly, describing the control parameters is challenging. As stated by Dang and Honda

[50], “the most commonly used version of this theory requires length parameters and firing information of

the muscles, which are difficult to obtain empirically. . . observation of EMG signals is limited to only a few

large muscles such as the extrinsic tongue muscles.”

Muscle-workspace control strategy: The strategy adopted by Dang and Honda [50] as an alternative to the

EPH models is appealing, but issues arise in its application to large, 3-d FEM models. Due to the various non-

linearities incorporated in the model, epistasis is prevalent in the process of active tongue mechanics. There-

fore small steps towards optimal activation pattern would be required. As each step requires re-evaluation

of all individual muscle contributions, this remains computationally expensive. The introduction of multi-

ple control points may require conflicting activation strategies, leading to additional evaluation as the effect

of antagonistic muscle contraction is resolved. Furthermore, there appears no simple manner in which to

introduce further optimisation arguments, such as those based on metabolic and energetic minimisation.

Quadratic modelling: The minimisation of a total energy functional, as achieved by Stavness [264], appears

most viable and could be directly applied to this muscle model. Although not described in this work, a

vector of nodal forces generated through muscle contraction could be expressed using a manipulation of

equations 4.16b and 5.6c and the additive decomposition equation 6.3 and constitutive relation equation 6.4.

Realisation of this method of solving the problem relies on the complex algorithm described by Edelsbrunner

and Mücke [61]. Fang et al. [68] also employ a gradient method to minimise a cost function, based on the

spatial orientation of the tongue, to determine the muscle activity required to attain the prescribed tongue

configuration. The Jacobian of the cost function was computed using a perturbation procedure, which would

be prohibitively expensive for a highly detailed geometry.
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7.2 Muscle activation model

The CE is an active element, so the contractile stress developed by the element, as defined by equation 6.8c,

is related to the level of activation αM in each muscle group M. The activation level, a quantity directly

proportional to the contractile force, is dependent on the electrical stimulus applied to the muscle.

The dynamics of the active state of the element can be modelled using differential equations [280]. Such a

model represents the concentration of calcium ions that controls the extent of muscle contraction. Pandy

et al. [208], Pandy [207] present a time-dependent ordinary differential equation, which approximates the

activation function under simplified conditions. This is defined, for each muscle M, by

9α ptq “
1

τR
r1 ´ αs u `

1

τF
rαmin ´ αs r1 ´ us (7.1)

where α is the muscle activation level, αmin is the minimum muscle activation level and u “ u ptq “ t0, 1u

is the net neural control signal to the muscle. This description of muscle activation does not account for the

differing degrees of maximal muscle contraction determined by signal frequency. With the chosen material

parameters, the zero strain stiffness of the matrix model accounts for the resting muscle tone [29], thus the

appropriate value of αmin is zero. Section 7.3 further discusses the excitation or neural input, u, to each muscle

family.

Although it can be solved directly using the two possible values of u and the temporal evolution of its value

for each muscle, in practise equation 7.1 is solved using a backward Euler method. The activation level at the

current time is given by

αt “
αt´1 ` q puq∆t

1 ` p puq∆t
(7.2)

with the scalar functions

q puq “ b ¨ u ` c , p puq “ d ¨ u ` e

and values

b “
1

τR
´ c , c “

1

τF
, d “

1

τR
´ e , e “

αmin

τF
.

The state of contraction of the muscle depends on the frequency of the electrical impulse transmitted to the

muscle [78]; the concept is illustrated in figure 2.15. Maximal muscle activation, where the muscle becomes

tetanised, requires a high impulse frequency, while a low impulse frequency results in a lower force of con-

traction. Regular motions of the tongue do not require extreme forces to be generated by its muscles; this

statement is confirmed computationally in section 10.1.

Since the contraction model collectively described by Martins et al. [171] and Pandy et al. [208] does not cater

for this concept, we decompose the peak contractile stress into two components, namely

T c
0 “ T s

0 Tmax
0 . (7.3)

Now Tmax
0 is the absolute maximum isometric stress that can be produced by the muscle and T s

0 P r0, 1s is a

scaling factor specified for each muscle M that reduces the maximum contractile stress that can be developed.

The product of this scaling factor and the muscle activation level describe the degree of contraction as a

fraction of full muscle response (FFMR), namely

FFMR :“ T s
0α . (7.4)
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With this decomposition of the parameters, three noteworthy cases can arise:

1. T s
0 “ 1,α “ 1: The muscle is producing the maximum contractile stress at the given deformation rate.

2. T s
0 ă 1,α “ 1: The muscle is fully activated at a lower impulse frequency. This case describes the

asymptotic values of figure 2.15 for the majority of the depicted stimulation frequencies.

3. T s
0 ď 1,α ă 1: The muscle has not yet developed a maximum allowable state of contraction.

By altering the values of T s
0 , τR and τF , more precise control of movement is developed by the neural model.

7.2.1 Combination of orthogonal muscle contraction with incompressible matrix

Now that the activation model has been presented, the functioning of the active portions of the muscle model

can be demonstrated. Comparison of the active model against examples presented in the literature is pro-

vided in appendix D.4. To further illustrate the functioning of internal muscle model, a simple experiment

was devised. This problem configuration will be used later to demonstrate further functionality of the tissue

and neural models.

A block of incompressible muscle tissue of size 1 ˆ 1 ˆ 1mm3, with one vertex at the origin, has a planar

motion constraint on the coordinate planes. The other three sides are nominally traction-free, but a provision

to impose a traction force on the e1 and e3 faces is made. Three orthogonal internal muscle families, each

aligned with a coordinate direction, are embedded and a fourth external muscle1 inserts into the +y surface

of the block from an origin plane 2mm away from the surface. The origin of each external fibre is governed

by a spacing rule

PO
0 “ cs P

I
0 , PO

1 “ h ` P I
1 , PO

2 “ cs P
I
2 (7.5)

with h “ 2mm the height above the surface and cs a spacing constant that controls the angle of insertion

(AOI) of the fibre into the surface. The basic geometry is shown in figure 7.1a.

For all cases, the block was discretised into 83 equally sized cells. The time-step size was 5ms, with a cu-

mulative time of 500ms, and the activation parameters τR “ τF “ 150ms and T s
0 “ 0.1 for all active muscle

groups. Each scenario presented has no prescribed activation histories and nominally no applied traction.

Simultaneous activation of the transverse orthogonal muscle groups leads to motion in the their mutually

orthogonal direction. The e1 and e3 aligned fibres are activated by setting uM “ 1, resulting in the y-

displacement depicted in figure 7.1b. The incompressible nature of the material ensures that the displacement

must be perpendicular to enforce the preservation of the material volume2.

1 In this example, the matrix contribution text
t was not included.

2 This point relates directly to the main topic of this thesis. The human tongue relies on this phenomenon to function correctly and

achieve its full range of motion. This experiment demonstrates that the incompressibility of the material is enforced sufficiently

well to capture this effect.
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P

n1
f

n2
f

P I

PO

t

e1

e2

(a) Example problem descrip-

tion: A 1mm3 block of mus-

cle tissue with deformation

controlled by manual activa-

tion of the specified muscle

groups.

(b) Contraction of the in-

ternal muscles aligned

in the e1 and e3 direc-

tions with no pressure-

induced traction.

Figure 7.1: Example problem description and result of internal transverse fibre contraction.

7.2.1.1 External muscles

The model presented in figure 7.1a was used further to demonstrate the functioning of the external muscle

model and the role of the AOI on the deformation of the surface tissue. In the first case, the incidence angle

of the fibres to the surface is made very small by setting the spacing parameter cs “ 1, while in the second

cs “ 2, resulting in a significant AOI.

The result of external muscle contraction in the two configurations is shown in figure 7.2. It demonstrates that

a displacement field similar to that depicted in figure 7.1b can be achieved using an anatomically different

configuration. The lateral displacement of the upper surface in the second case is substantially larger than

the first due to the greater AOI and thus an increased tangential component of traction at the surface. It was

observed that, due to the nonlinear muscle force-length relationship, the final contractile stress distribution

in the external fibres is less uniform as the AOI increases. This results in a noticeable variation in vertical

displacement of the surface, as the fibres closer to the axis planes are significantly shorter than those at the

edge of the body. The central fibres thus achieve a lower value for λc than the peripheral fibres as the surface

displaces vertically.

7.3 Control of neural input signals

During a cycle of inhalation and exhalation, pressure within the airway fluctuates and distorts the soft tissue

of the oropharynx, thereby altering the airflow within the upper airway. In response to this, various muscle

groups contract and relax in order to minimise movement of the soft tissues and a blockage of the airway as

a consequence.
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(a) cs “ 1: View of

traction-free surface

(b) cs “ 2: View of traction-free

surface

(c) cs “ 1: View of sym-

metry plane

(d) cs “ 2: View of symmetry

plane

Figure 7.2: Contraction of external muscles at differing AOI to the insertion surface. Increase of insertion

angle results in greater lateral displacement of insertion surface and prominent length-effects.

Results are shown at t “ 500ms.

In a healthy subject, the tongue is held forward and down in the mouth throughout the respiratory cycle.

Cheng et al. [38] observed a posterior displacement of less than 2mm on the distal surface of the tongue

during the respiratory cycle. A complex sequence of neural activation in both the GG and other muscles of the

HUA is triggered in response to the changing forces acting on the tongue. This autonomic response with the

muscular tissues is mediated primarily through the action of the GG; and a very distinct pattern of electrical

activity can be observed in EMG readings of the GG during any respiratory cycle [3, 165, 261, 221, 10].

To accommodate changing forces acting on tissues due to posture, intra-airway pressures, muscular contrac-

tion and the spatial position of the tissues, muscle input and activation levels cannot be known a priori. In the

case of OSA, it is considered that muscle activation, particularly for the tongue, depends on several factors:

Desired motion or configuration: Specific muscles contribute to specific motions of the tissues. To achieve

this motion, a muscle or combination of muscles must be recruited to displace the tissues as necessary.

Current position and state of activation of the muscle: If the tissues are positioned unfavourably, conceiv-

ably it may be impossible for a muscle to produce active contraction (by virtue of the length of the CE),

necessitating some other combination of muscles first moving the body into an optimal position. Ad-

ditionally, and hypothetically, should an antagonistic muscle body be highly activated, then plausibly

either this would need to be deactivated in order to prevent resistance to motion or the primary muscle

would be required to have a greater contractile force than antagonistic muscle body.

Previous activation history: The rate of change of activation level is a function of the current activation

level. There is a lag between the initial signal to a completely inactive muscle and the time at which

it becomes tetanised. This may affect the ability of the tissue to respond in the desired manner with

respect to the stimulus.

Sleep state: Muscles have been shown to respond differently when a patient is asleep compared to when
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awake. This is demonstrated in data highlighted in section 2.6.

The section that follows details the mathematical descriptions of two points salient to the problem of the

moving soft tissue bodies, and a method for determining the appropriate combination of active muscles to

produce a prescribed motion during complex loading conditions.

7.3.1 Control of spatial orientation of soft tissues

Proprioception provides a physiological mechanism for an awareness of the spatial orientation of the body’s

tissues without processing visual data. Thus the body is aware of the configuration of the tongue at all times

and is able to recruit the necessary muscles to perform a task. Coupled with this is the learned information

regarding which muscles should be used to carry out the given task optimally in terms of speed and energy

expenditure.

7.3.1.1 Spatial control function

An alternative to the methods described in the literature for continuum models is the minimisation of a

spatially-dependent function similar to those used for forward kinematic models. This hinges on the idea

that there exists a combination of muscles that, when activated simultaneously, move the tissues into an

orientation close to that specified by a position-dependent function. Due to the complexities of the model,

namely the highly nonlinear material models and the geometric complexity, no guarantee of such a solution

is assured. However, it is hypothesised that a suitable combination of muscles could be activated to produce

a spatial configuration close to the desired state.

The idea of mimicking the proprioceptive capabilities of the tongue was explored by capturing information

regarding the current three-dimensional position of the surface of the tongue in relation to the desired po-

sition of those points. The resulting motion is dependent on the action of the muscles whose selection is

variable, and seemingly a consequence of the current orientation of the tongue. Using this method, a simpli-

fied form of proprioception thus would assist in the tongue predicting the consequence of muscle activation

before it is performed and thus precisely controlling the motion of the tongue through space.

In general, an objective function that defines this motion (or lack there-of) is

O
ϕ

“ min
“
fϕ px, tuu , tq

‰
(7.6)

where the spatial function, influenced by the set of neural signals tuu, is defined by

fϕ px, tuu , tq :“
ÿ

p

››››wp

”
xp pXp, tu ptqu , tq ´

‹
xp pXp, tq

ı ›››› . (7.7)

This function provides a measure of the distance of a number of points xp away from their respective goal

positions, scaled by a weighting factor. The weighting factor introduces a method to place greater significance

on the accuracy of some points over others. The standard choice wp “ 1 was made for all control points unless

explicitly stated.

For the simulation of breathing in particular, equation 7.7 was specified such that a number of points on

the surface of the soft tissues were to remain as close to their original position as possible; that is, we seek
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position maintenance. The objective function was therefore chosen to be one that is to keep the tongue in its

reference state, that is
‹
xp pXp, tq “ Xp. However, the minimisation of such a function does not ensure that

an energetically optimal solution is found. To account for this, we introduce a second objective function in

section 7.3.2.

7.3.2 Minimisation of energy expenditure

The problem of energy minimisation has been considered in the context of one-dimensional skeletal models.

Neglecting constraints not valid for this work, an energy minimisation parameter is presented by Epstein

and Herzog [64], Herzog and Binding [102] as

φ “
ÿ

M

ˆ
FM

aM

˙a

“
ÿ

M

σa
M (7.8)

with the exponent a ě 1 a value debated in the literature. Bhargava et al. [20] provide a phenomenological

model describing the total energy expenditure rate during contraction by a decomposition into physically

motivated components. Their description,

9E “ 9A ` 9M ` 9S ` 9B ` 9W , (7.9)

includes contributions from activation heat rate, maintenance heat rate, shortening heat rate, basal metabolic

rate and work done during shortening. The contractile work done was defined as

9W “ f c
´
Lc, 9Lc,α

¯
9Lc (7.10)

where Lc is the length of the muscle and F c is a contractile force function.

Inspired by the description given by Bhargava et al. [20], a continuum description of the muscle work rate was

developed. It was assumed that, given a small enough time-step, the contribution from the work component

of equation 7.9 dominates and the other terms could be neglected.

Minimisation of the total contractile work is the same as minimising the total contractile work done for a

specified time-step for a problem discretised in time. So, for each muscle M

min rWcs “ min

„ż

t

9Wc dt
ȷ

” min
”ř

t
9W t

c ∆t
ı

“
ÿ

t

min
”

9W t
c

ı
∆t . (7.11)

To achieve this, we define an objective function

O
9Wc “ min

„
f

9Wc px, 9x,uq

ȷ
(7.12)

in terms of a work rate function. The function to be minimised is presented below after a short digression, as

a brief review of the source of energy required to institute motion is necessary to motivate its form.

Length change of the muscle and thus the sarcomere CE is always a mechanically based mechanism. How-

ever, chemical energy in the form of ATP is required to break and reattach cross-bridges (briefly discussed in

section 2.5.2.1 and detailed in Chapman and Gibbs [36]). The state of the muscle at the time when CE length

change occurs gives insight into the sources of energy that induce the motion:

1. α “ 0: No cross-bridges are active or attached, meaning that the CE is a free sliding element and λc can

change freely with the change in λf. No chemical energy (from the muscle itself) is required to institute

any length change.
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2. α ą 0: Cross-bridges are active and chemical energy is required to break bonds between myosin heads

and actin filaments before length change can occur. Chemical energy must be expended once more to

reattach cross-bridges. In this state, the contractile element may be lengthening or shortening depend-

ing on the neural stimulus:

(a) 9λc ă 0: Contraction of the CE occurs. Mechanical energy is expended by the muscle during the

power stroke of the cross-bridge cycle.

(b) 9λc ą 0: Elongation of the CE occurs. After the cross-bridges are broken, an external source (e.g.

tissue elasticity or an active antagonistic muscle) expends energy causing a change in the relative

position between the myosin and actin filaments.

Based on the above, from continuum principals, the mechanical work rate for any muscle group M can be

derived. The full derivation, presented in appendix C.2, is summarised here. Starting from equation 3.45, the

work rate for the muscle tissue can be decomposed into the volumetric, matrix and fibre contributions. The

power due to fibre contributions,

9Wf “
Ωf

0

ż
φfτ f : l dΩf

0 (7.13)

can be reduced to the scalar computation

9Wf “
Ωf

0

ż
φfTf

9λf dΩf
0 (7.14)

using the definition of the fibre stress (equation 6.6), the transformation of fibre elements (equation 3.20) and

the identities

pFN fq
¨ “ 9FN f “ 9λfnf ` λf 9nf (7.15)

1 “ nf ¨ nf ñ 0 “ nf ¨ 9nf . (7.16)

The Hill stretch (equation 6.7b) and stress (equations 6.3 and 6.4) decompositions are used in conjunction

with the time derivative of the fibre stretch with

9λf “ pλsλcq¨ “ 9λsλc ` λs 9λc (7.17)

to produce the final result that the contributions of the Hill three-element components to the fibre work rate

are

9Wf “
Ωf

0

ż
φfTpλf

9λfλf
´1 dΩf

0
looooooooooooomooooooooooooon

9Wp

`
Ωf

0

ż
φfTsλf

9λsλs
´1 dΩf

0
looooooooooooomooooooooooooon

9Ws

`
Ωf

0

ż
φfTcλf

9λcλc
´1 dΩf

0
loooooooooooooomoooooooooooooon

9Wc

. (7.18)

Motivated by the argument in the paragraphs above the derivation of equation 7.18, a modification of the CE
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work rate is made. The active mechanical contribution to contractile work is defined as3

9WA
c :“

Ωf
0

ż
H

´
9λc

¯
¨ φfTcλf

9λcλc
´1 dΩf

0 , H
´

9λc

¯
“

$
&

%
1 if 9λc ă 0

0 if 9λc ě 0
(7.19)

where the function H
´

9λc

¯
is similar to the discrete form of the heaviside function. Note that the contractile

work rate is always negative as energy is expended by the muscle to produce a mechanical motion only if

contraction occurs. Therefore, minimisation of the function

f
9WA

c px,uq :“ ´
ÿ

M

9WA
c

´
λf,λc, 9λc,α,u

¯
(7.20)

results in the least amount of mechanical energy being expended by the specified collection of muscles ac-

tively involved in the production of the desired displacement configuration.

7.4 Genetic algorithms with multi-objective optimisation

A number of alternative strategies exist that can be employed to simultaneously minimise equations 7.6

and 7.12. As both of these functions depend on α puq, direct minimisation of the problem, such as that

implemented by Stavness [264] is possible. However, as noted by Fang et al. [68], it is challenging to describe

an analytical relationship between these functions as the interplay between the tongue configuration and

muscle activation is complex.

For this study, a customised GA [88, 89, 182, 309, 98] was implemented to optimise the active muscle set

based on several conditions. This choice of solution method was made as it is relatively simple to describe

and implement the problem and conditions in the framework of a GA. It has been shown to be a suitable

choice for constrained and unconstrained uni- and multi-objective optimisation of nonlinear general [150,

194] biological [158, 35, 140, 37, 321] engineering problems.

Other metaheuristic methods, such as random hill-climbing, neural networks [11] or particle swarm optimi-

sation could be utilised, and, like GAs, these require careful configuration in terms of evolution parameters

and weighting factors. Swarm methods, however, rely on having a large number of sample points, which

made them too computationally expensive to be utilised in this application. Less suitable are gradient meth-

ods, such as Newton and conjugate-gradient methods, Kuhn-Tucker theory and constrained optimisation

[145, 19] as these rely on the calculation of derivatives with respect to the the functional parameters. Due to

the multiple levels of nonlinearity of the given problem, this was considered too difficult a task to perform

analytically and expensive to approximate by perturbation methods.

3 It is noted that the potential sign change in the contractile work rate function as the difference between the muscle performing work

on the system (negative work rate as the CE shortens) or the system expending energy to lengthen the CE (positive work rate). We

need to remember that a positive work rate does not imply work being put back into the muscle resulting in a cumulative increase

in muscle chemical energy - energy is required to make cross-bridges or break them, both of which occur during lengthening or

shortening of the CE. For this reason, we must discard quantities involving a positive work rate in order to ensure that we keep track

of the energy expended by the muscle during contraction to produce motion. A more complete model of the actin-myosin complex

could be used to create a more accurate description of the energy expenditure of CE element length change. Such a model could

be based on the statistical distribution moment model [324] which could be used to relate the number of broken and reattached

cross-bridges to the quantity of chemical energy involved to alter the state of the cross-bridges, and/or the forementioned work of

Bhargava et al. [20].
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7.4.1 Background

Genetic algorithms mimic the evolutionary processes of selection and recombination to probe a search space

for the optimum combination of input parameters to minimise a selected function [309]. Therefore, they fall

into the category of metaheuristic evolutionary algorithms.

The fundamental formula of a Genetic algorithm, depicted in algorithm 2, is the following:

Algorithm 2 The genetic algorithm. The unique genome id’s are indicated in yellow and their evaluated

score in green. The genes, represented by the sequence of blocks, have a binary representation

and represent traits that are either “on” (red) or “off” (blue).

Initialise

1

1
0
1
0
1

?

2

1
0
0
1
1

?

3

0
1
0
0
1

?

4

0
0
1
1
0

?

Evaluate

1

1
0
1
0
1

2

2

1
0
0
1
1

2

3

0
1
0
0
1

3

4

0
0
1
1
0

4

Terminate?

Result

9

0
0
0
0
0

5

Selection

1

1
0
1
0
1

2

2

1
0
0
1
1

2

3

0
1
0
0
1

3

4

0
0
1
1
0

4

Crossover

3

0
1
0
0
1

3

4

0
0
1
1
0

4

5

0
1
1
1
0

?

6

0
0
0
0
1

?

Mutation

3

0
1
0
0
1

3

4

0
0
1
1
0

4

5

0
1
0
1
0

?

6

0
0
0
0
1

?

YES

NO

An initial population of candidate solutions, each known as a genome, is produced. The genome is decom-

posed into a number of genes, each of which is interpreted as a trait that is to be optimised. This first group of

candidates, and each subsequent collection of genomes that are generated form part of a generation. Given

a generation of candidate solutions, each solution is tested and evaluated according to a prescribed objec-

tive function. The candidates are ranked according to their fitness and the best solutions from the current

generation are predominantly used to produce the next generation, which will contain a mixture of the best

traits of the previous generation. However, some deviation away from the “ideal” hierarchical traits evolved

from the initial population is allowed through the process of mutation and a random statistical chance that a

poorer candidate may be involved in the breeding process. The description of the methods used to describe,

solve and optimise the muscle selection problem is given in section 7.4.2.

7.4.1.1 Mathematical traits

The term search space is used to describe the total number of possible combinations of input parameters

wherein an optimum solution lies. For a binary input set with M parameter parameters, the search space is a

hypercube of the size 2M, with each sampling point lying at a corner of the hypercube. Thus, for the example

of 4 muscle families a total of 16 combinations exist, each defined at the corners of a four-dimensional cube
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p0, 0, 0, 0q

p1, 0, 0, 0q

p0, 1, 0, 0q

p1, 1, 0, 0q

p0, 0, 1, 0q

p1, 0, 1, 0q

p1, 1, 1, 0q

p0, 1, 1, 0q

p0, 0, 0, 1q

p1, 0, 0, 1q

p0, 1, 0, 1q

p1, 1, 0, 1q

p0, 0, 1, 1q

p1, 0, 1, 1q

p1, 1, 1, 1q

p0, 1, 1, 1q

Figure 7.3: Possible solutions for a binary genome on a 4-dimensional hypercube. Increasing the complexity

of the genome populates the boundary and interior of the hypercube with additional candidate

solutions, exponentially growing the size of the search space.

as shown in figure 7.3. The search space expands exponentially with each additional parameter that is to be

tested4.

Evolutionary algorithms leverage the theory of implicit parallelism [309] to find the solution minima while

probing a reduced sample of solution candidates. In the process of evaluating a population of candidate

solutions, many hyperplanes are sampled when each genome is tested. Statistical data on the global effec-

tiveness of each hyperplane in producing a fit genome is developed as the size of the tested population is

increased. The recombination process ensures that these effective hyperplanes become and remain dominant

in the process of evolution. Given a sufficiently adequate evolution time and the correct evolution properties,

GAs have been proven to demonstrate convergence on the global solution [237, 97].

7.4.1.2 Evaluation, selection and recombination operators

Evaluation refers to the generation of a value representing the candidate solution’s viability to be the function

minimiser. This value, or score, is determined by inputting the candidate into the objective functions, and in

the case of having multiple objectives, producing numerous scalar values that are combined to form a single

value taken as the score. Typically the candidate in the final generation with the lowest score is considered

to be the overall best solution.

The process of evolution relies on the two recombination operators, crossover and mutation, which permute

and alter the characteristics of a selection of the previous populations to produce viable candidates that

evolve as to be global minimisers of the objective function. The steps used to produce a new generation of

candidates are detailed here.

The selection process determines which members of the previously evaluated generation are brought forward

to form the basis of the next generation. Generally, there is a bias towards the fittest candidates being used,
4 Baker [11] discusses the difficulty associated with this issue with regard to sampling the effect of muscle contractions within the

tongue.
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as especially after a number of generations, they demonstrate dominant traits that could produce optimal

solution. However, the inclusion of a less-viable candidate may assist in preventing convergence on a local

minima. Multiple selection methods exist, each with different properties suiting different applications.

Recombination occurs after selection, and the previous generation is discarded as it is assumed that the new

generation will always produce a more viable candidate than the previous. In some cases, this may not be

an ideal choice and elitism may be a preferred option. Elitism ensures that the overall best candidate that has

been evaluated within the entire population is always brought forward as a member of the next generation.

Should the global optimum be produced early on in the evolution process, elitism would ensure that this

solution is preserved.

The crossover (or cross-breeding) procedure, where the traits from two parent genomes are combined to form

children, is first applied. In one-point crossover (which is depicted in algorithm 2), a crossover point is

randomly selected and the genes above the point from one parent is mixed with those below the point on

the second parent to produce a new genome, and the remaining genes in the parents are combined to form a

second candidate. However, one-point crossover cannot necessarily produce all solution combinations [182],

and two-point crossover, where an internal segment of genes is swapped between parents, or other crossover

schemes, may be appropriate. The parameterised uniform crossover procedure [182] performs an exchange

of parental traits on a gene-by-gene basis, with the parent from which the trait will be inherited being chosen

on the basis of statistical probability.

Mutation is a low-probability operator that modifies individual genes of the children produced as a conse-

quence of crossover. Evaluated on a per-gene basis, it presents an opportunity for the value of a gene to be

modified to produce some variation in the course of the solution evolution. For example, in a binary genome

the value of the gene would be flipped. The rationale behind this procedure is to perturb the course of the

solution evolution and prevent convergence on a local minimum as opposed to the global minimum.

7.4.2 Implementation and application to the selection of an active muscle set

It is desired that the solution of the class of nonlinear functions of the form

O “ min rf pg pu1,u2, . . . ,uMqqs (7.21)

be found. Here, the nonlinear composite function f ˝ g describes some scalar measure of the performance of

the input parameters uM. In this work, the parameters uM are interpreted as the binary neural input to each

muscle fibre family5. The inner function g is one that has a highly nonlinear evolution in space and time.

Evaluation of the objective function, O, requires solving the global displacement problem, g , for the given

neural input signals and subsequently evaluating f based on the result of g .

The prevalence of the phenomenon of epistasis [309], the interaction between parameters, ensures that the

parameters cannot be evaluated independently. Given the nonlinearity of g , it is expected that epistasis

may play a significant role in a muscle problem involving interweaving muscle fibre families, as the roles

of several muscle groups may overlap given a certain configuration and desired motion of the tissues. Fur-

thermore, given their interaction through tissue deformation and the nature of the governing equations of
5 It would be ideal to solve for a physically appropriate spectrum of u, τR, τF (or simply α) as, through a variation of impulse

frequency, the control mechanism of muscles is much finer that modelled here. However, given the framework presented here,

this problem would be exceptionally expensive to evaluate, requiring computational power well beyond the capabilities of modern

computers.
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the Hill-elements, the performance of each spatially-independent fibre would be related indirectly to the

configuration of the others.

7.4.2.1 Implementation

A binary GA, implemented using the open-source library GAlib [295], was used to predict a set of neural input

signals tuu such that the objective function, described in its complete form in section 7.4.2.2, was minimised

at all evaluation time-steps. The elitist and non-deterministic (stochastic) algorithm selected from GAlib for

use in this work is based on the work of Goldberg [88]. The initial population size was determined based on

the size of the active set to be evaluated.

One of the key choices made in the implementation was the maximisation of genetic variation between in-

dividuals of a particular generation. A uniform crossover procedure with high probability of crossover and

mutation was therefore used to achieve this. The choice of constants used for the probability that crossover

or mutation would occur were 0.5 and 0.1 respectively.

7.4.2.2 Multi-objective optimisation

It is desired that the functions presented in equations 7.6 and 7.12 (utilising equations 7.7 and 7.20) either be

simultaneously minimised, or that a solution that is an adequate compromise between minimising both be

found. Reformulating equation 7.21, the composite problem is described by

O “ min

«
ÿ

o

wo ¨
‹

f
o

pgo pu1,u2, . . . ,uMqq

ff

, (7.22)

with a linear scaling of weights6
ÿ

o

wo “ 1 selected. The first component of the objective function, g1, requires

the determination of the actual displacement of the control points. Second objective function, g2, requires the

evaluation of local parameters stored at each calculation point containing active fibres.

A difficulty in utilising these two functions simultaneously is that their nature is very contrasting. Firstly,

they have different units (length vs power) and the scale of the values returned by the two outer functions fo

may not be of the same order. Secondly, they play antagonistic roles in the promotion of muscle activation.

Ultimately, the solution to the problem is to non-dimensionalise the scores by transforming all fo ñ
‹

f
o for all

quantities to be considered. This leaves comparable scores since they now have the same units. A weighting

factor wo is then applied to the scores and the weighted scores cumulated to a final total that is interpreted

as the solution fitness. To non-dimensionalise, a scaling factor for each function is required. Sensible factors

include the L2-norm and 8-norm. Choosing the infinity norm will ensure that all values lie in the range

r0, 1s. However, it leaves an open range p0, 1s for the minimum score. Additionally, there is no guarantee that

the values are distributed in the range such that the choice of weighting factor is at all appropriate.

A further issue for consideration is that the norm cannot be known a priori but rather can only be developed

as the search space is tested. To this end, a sliding scaling rule was developed where, for each objective

6 A number of methods could be used in the process of multi-objective optimisation with a GA. Pareto optimisation [98], where the

front providing the potential candidates for global minima is resolved, is a popular method and would be ideal for this purpose.

However, resolving the front requires a large number of evaluations and therefore more judicious use of computational resources.
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function o, the following rule is applied to each element i of the set of calculated scores f :

‹

f
i

“
f i ´ f´

f` ´ f´

(7.23)

where f´ and f` “ }f}8 describe the minimum and maximum elements in f . This leaves all scores for

each objective function in the range r0, 1s with the best score always equal to zero and the worst with a value

of unity. The distribution of values over the range is expected to be more regular, with an easier distinction

between the optimal result and other contenders.

One point to consider when continuously re-evaluating the scores is how each relates to the selection of the

best genome when elitism is considered. During elitist selection for the next GA population, the current

genome with the best score is chosen. However, since the actual score is continuously re-evaluated with

each new genome, a genome that has a non-constant score, but which may change at a later evaluation, is

selected. This fact is irrelevant, as elitism chooses the best genome against the current population of genomes

and these are all scaled by the same factors. Therefore, relative to one another, the ranking of each genome in a

specific generation will remain constant and the final result will be the same as if the final scaling factors were

predetermined for a given time-step and applied up-front. However, the rank of the elite genome relative to

a new generation is not fixed as the members of the new population are evaluated.

7.4.2.3 Expectation of the results

Presenting the simple case where increasing muscle activation is required, it is shown that the activation

parameters could be chosen such that the contractile force can be adequately predicted by this muscle model.

The expected result for the muscle activation problem is shown in figure 7.4.
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Figure 7.4: GA parameter selection for achievement of optimal activation pattern. Given an overestimated

set of muscle characteristics, the GA behaves in a self-correcting manner leading to the evolution

of the trend which follows the optimal activation history.

Should some optimisation scheme not be utilised, it is more likely that the over- or under-estimation of the

optimum contractile history be deduced a priori. However, given an adequate, but not necessarily optimal,

selection of parameters, it is assumed (and it will be demonstrated) that the solution provided by the GA

will oscillate around these values. In fact, it is required that the parameters (i.e. T s
0 , τR, τF ) provided to
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the model reproduce the curve illustrating overestimation, which itself provides the GA with a buffer from

which to select a reduced contractile force as the optimum solution. Due to the large number of parameters

that would be required to be tuned to match the activation pattern, the probability of exactly reproducing the

real activation history is minimal but a trend following the optimal solution is expected to be observed.

However, the selection of weights for the spatial error and work rate minimisation functions has a major

role in the obtained result. As previously mentioned, the former function promotes muscle contraction while

the latter restricts it, and therefore the accuracy of the trend observed depends on these factors. A balance

between the two must thus be maintained: too much emphasis on the former may lead to over-stimulation

of various muscle groups (e.g. co-contraction of antagonistic muscles when muscle relaxation would suffice),

while increasing the effect of the latter would result in poor spacial maintenance due to sub-optimal muscle

deactivation.

7.4.3 Reducing the computational cost

The evaluation process is a costly procedure, as a fully nonlinear, incompressible FEM problem is to be solved

for each evaluated combination of muscle signals. Choices made to reduce the number of evaluations and

the cost of each evaluation were as follows:

Utilise a binary GA: The leading choice of driving muscle activation with a binary signal constricts the

search space to a finite size. Solving for the optimal muscle activation level directly, as opposed to using

the neurally-controlled activation model given in equation 7.1, would require searching the bounded

space αM ptq “ r0, 1s @ M, αM P R at each time-step and would be a prohibitively expensive task.

Simplify the nonlinear problem: Given that an augmented framework for dealing with incompressibility

is utilised, only the compressible step is solved using the GA. The displacement solution produced by

optimised active muscle set determined by the GA is subsequently refined using the incompressibility

scheme. This is a practical solution if the dilatation error produced in the compressible phase of the

augmented algorithm is not overly large. In practical cases involving the tongue, the solution produced

appears adequate but it was noted that in some cases (such as that demonstrated in section 7.5) the fully

incompressible problem must be solved in order to obtain sensible results.

Prevent GA evaluation at each time-step: Given that the GA can accurately predict muscle activation for

current time-step due to the smoothness of the loading conditions, it was assumed that this result

would be a sensible choice for the next number of time-steps. The GA can then correct the optimal

active set at the next evaluation step which, in practise, was separated from the previous evaluation

step by only a single time-step.

Prevent re-evaluation of data: The entire history of data and solutions produced by the GA is stored for

each time-step. This allows the construction of a look-up table to which the data of each genome can be

tested. Should the genome have already been evaluated in this time-step, the solution and scores can

be immediately deduced from the history.

Limit the number of generations: A contentious decision was severely limiting the number of generations

tested. A value of 5 (as opposed to the norm of ą 100 [120]) was chosen for this parameter. It was as-

sumed that the time-evolution of the active set would be continuously corrected by the GA. In practice,

this appeared to be the case with the solution becoming viable after the first few time-steps.
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Reduce the size of the search space: To reduce the size of the search space, certain muscle groups were ex-

cluded from evaluation based on whether the muscle is overall in a tensile or compressive state. It

appeared reasonable to assume that muscles in an overall tensile state may assist in returning the tissue

to its original position by contracting and returning to their original length, while muscles that are in a

compressive state should likely undergo relaxation.

To gauge the state of the muscle, a measure of the average fibre stretch ¯̄λf at the current time was com-

pared to that calculated in the pre-strained reference configuration ¯̄λ0f . Given a cut-off parameter cL

which made provision for uncertainty in the approximation, it was specified that a muscle be consid-

ered to be in a tensile configuration if

¯̄λf ě cL
¯̄λ0f (7.24)

where cL has been heuristically chosen as to minimise the active muscle set, thus reducing computa-

tional time, without compromising the result.

Analysing the outcomes of several simulations of the tongue, the heuristic definition of the muscle

selection factor was chosen to be

cL pθq :“
θ

90
cmin
L `

ˆ
1 ´

θ

90

˙
cmax
L , (7.25)

where cmin
L “ 0.98, cmax

L “ 0.995 and θ is the angle of incline of the body in degrees (with 0 indicating

the supine position and 90 the upright configuration). The volume-weighted average (VWA) stretch

value7 , defined as

¯̄λf :“
Ωf

ż
φfλfL

0
f dΩf

Ωf
0

ż
φfL

0
f dΩf

0

, (7.26)

was chosen to provide the value of ¯̄λf. This calculation required an estimate of the embedded fibre’s

length as well as the effective volume occupied by the external muscles.

The volume of external muscles was approximated by representing each muscle fibre as a hexahedral

entity. Since the length of the fibre was known, the effective cross-sectional area of the muscle was

approximated as the area of the face into which it was inserted. The volume was therefore considered

the region swept by the cross-section along the fibre length.

The reference local (internal) fibre length L0
f was approximated from the computational cell geometry

and the fibre orientation using a projection method illustrated in figure 7.5.

A value proportional to the “true” fibre length was determined by projecting the fibre unit vector,

defined at each calculation point, from the cell barycentre to the faces of the cell. The geometry of

the faces was approximated by four linear triangles, thereby approximating each region of the face

as a plane. If the projection of a line emanating from the barycentre along the direction of the fibre

intersected with the plane within the boundaries of the triangle, then this point was considered a valid

projection point. Once the two face intersection points were found, the norm of their difference in

7 Possible alternatives that were evaluated include a simple summation calculation point data ¯̄λf “
ř

f λfL
0

fř
f L

0

f
and the tracking of a

set of points within the domain that are collectively representative of the configuration of muscle fibres that constitute a muscle

group. Although all of the methods produced identical trends in the results, it was decided that the VWA would provide the most

mathematically rigorous result (as it accounted for the volume of influence of the fibre) and was therefore most likely to be more

accurate than the other methods.
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(a) Distribution of fibre data at calculation

points for one muscle group. An oc-

tant in which the one can assume the fi-

bre direction uniform is highlighted in

blue.

(b) Triangulation and projection method

used to approximate the fibre length

Figure 7.5: Estimation of local fibre length.

spatial position was considered, due to number and distribution of calculation points, to be twice the

length of the fibre. The constant of proportion was chosen based on the assumed region of influence of

the calculation point, as shown in figure 7.5a.

7.4.4 Assistance with solution convergence

Given that some of the steps used to reduce computational cost likely destroy the convergence properties of

the GA, a number of methods were employed to ensure that a reasonable result was produced after the first

few time-steps:

Population initialisation: It was expected that the previous "optimal" solution was a fair approximation to

the solution at the current time-step. Such an assumption is appropriate given the smoothness of the

material models and loading conditions. The initial generation was thus produced with the previous

solution as a member, along with all singular options to evaluate the corners of the hypercube. The

corners were evaluated as it was expected the action of certain muscles would be dominant in the

solution and the solution thus similar to the previous one. This, in effect, mimics the initial analysis

step of the muscle workspace strategy proposed by Dang and Honda [50].

Critical muscles: Experimental data suggested that the action of a few muscles should dominate the solu-

tion. Therefore, an a priori decision to enforce the evaluation of critical muscle groups, regardless of

other filters used to limit the search space size, was made. For the model of the tongue, the components

of the GG were tested regardless of the body’s configuration.

Elitism: As the number of generations that were evaluated was low, it was ensured that each generation had

at least one good reference point from which to produce alternative solutions using the recombination

operations. This was to reduce the number of evaluations wasted on poor guesses due to suboptimal

recombination.
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7.5 Validation of neural model

To demonstrate the capabilities and shortcomings of the GA approach, two illustrative examples based on

the problem demonstrated in section 7.2.1.1 are presented and discussed. In both instances, a compressive

pressure load described by

p “ ´2500 psinπt˚q
1.75 , t˚ “

t mod 2.5

2.5
, (7.27)

resulting in a maximal pressure magnitude of 2500Pa with a period of 2.5s, is applied to the side faces of the

block. We choose to monitor the point P “ p1, 1, 1q mm on the corner of upper surface and the two specified-

traction surfaces. All muscle groups are allowed to activate as necessary in order to prevent motion of the

upper surface.

7.5.1 Position maintenance during temporally-dependent pressure load

In this first example only the displacement function is considered. The objective function, given singularly

by equation 7.6, is that under the action of muscle contraction four control points located on the corners of

the positive e2-face remain in their reference position.

Position control though the selection of neural stimulus was simulated and compared to a fully passive

scenario. In figure 7.6a, the evolution of the distance that of corner P from the expected equilibrium position

is depicted, along with a trace of the applied pressure.
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Figure 7.6: Active and passive behaviour of a block under a sinusoidal compressive pressure load applied

to the +e1 and +e3 surfaces. The maximum compressive pressure magnitude was 2500Pa and

T s
0 “ 0.025 for all internal muscles and T s

0 “ 0.0025 for the external muscle. Only a displacement

objective function was considered.

In the passive case, where the loading causes an extension in direction e2 and compression in e1 and e3, only

the matrix and PE of the e2 orientated fibres provide resistance to deformation. Comparison of the passive

and active cases demonstrates that the GA was able to maintain P close to its goal position.

The muscle contraction history for the internal muscle groups is shown in figure figure 7.6b. A cyclic re-

sponse, coinciding with the regularly changing traction load, is present in each muscle group. At the start of
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each cycle, the e2 fibre contracts to oppose the motion generated by the load. However, since control of the

developed contractile stress is limited, the e1 and e3 muscles co-contract to oppose the excessive force gener-

ated in the e2 fibres. Towards the middle of the cycle, where the load is at a maximum, the e1 and e3 muscles

deactivate and the e2 muscle attains a maximum activation level. As the load decreases, a similar activation

pattern seen in the beginning of the cycle is present to provide fine position control. At the end of each cycle

the activation levels of all muscles are non-zero, thereby locking the cube in its original configuration.

This example demonstrates that the neural model functions as expected. However, the model is reactive to

its current state and not predictive in a way that truly mimics the motion control exhibited in vivo. It has been

observed that, although the results are not repeatable due to the random nature of the GA, the trends in the

results are repeatable, as demonstrated here and in chapter 11.

7.5.1.1 Optimising for work rate

In the second example, the problem configuration was the same as before but now both the displacement and

work rate objective functions were considered. In order to demonstrate the effect of a bias towards energetic

efficiency, a spectrum of weighting options were chosen and sequentially evaluated.

Driving the control model is the decision to contract or relax each muscle group. Figure 7.7 illustrates that

signal for contraction of the primary muscle became more sparse as energy conservation is made a priority. In

particular, the contractile duration was banded around the time of peak pressure, when displacement would

otherwise be greatest.
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Figure 7.7: Neural activation pattern for the internal e2 orientated muscle for various weightings of objective

functions.

The effect of the weighting on the ability of the block to obtain the desired displacement configuration is

illustrated in figure 7.8a. It was observed that shifting the bias from an optimal displacement result to an

energetically optimal result produced increasing displacement of the block, of which the underlying cause

can be extracted from figures 7.8b and 7.8c.

These figures demonstrate that the e2 muscle that is primarily used to oppose motion produces less contrac-

tile force as the weights shift towards energetic efficiency. Furthermore, the amount of co-contraction of the

e1 and e3 muscles required as the applied pressure was removed from the tissue was, in general, reduced.

This was because, without actively contracting at a particular time-step, the force generated in the CE of the

e2 muscle remained sufficient to resist the applied pressure.

It was observed that there existed a band of weights that produced a similar result for both displacement of

the measured point and the predicted optimal muscle contractile force. These weights remained energeti-

cally competitive. Utilising weights beyond that band produced nonsensical results as the need for energy

conservation dominated and resistance to motion was almost completely ignored. Comparing figure 7.6a to
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Figure 7.8: Active behaviour of a block with sinusoidal compressive pressure load applied to the +e1 and

+e3 surfaces. Both a displacement and an energetic objective function were considered, with the

respective weights provided in the legend. With a higher work rate bias, displacement control

is lost leading to large deformation of the block. An example of energetically sub-optimal co-

contraction of antagonistic muscles is indicated by the black arrows. The blue arrows show an

example of antagonist co-contraction contributing towards a poor displacement performance.

figure 7.8a for the weights
␣
w1, w2

(
= t0.2, 0.8u, at the latter stages of the third pressure cycle the displacement

of P exceeds that of the purely passive case. In this instance, co-contraction of the e1 and e3 was performed

to reduce the rate at which the e2 length changed, thereby conserving energy but leading to inferior overall

performance.

An analysis of the cumulative contractile work performed highlights additional characteristics of the control

model. Figure 7.9a shows that concurrent with reduced contraction is reduced energy expenditure by the

primary muscle. For the most part the same trends were observed for the total contractile work performed

in the system, illustrated in figure 7.9b. However, for very low displacement-function weights, the overall

energy consumption is far from optimal and may ultimately exceed that resulting from having a greater

emphasis on position control. There exist periods of no muscle activation, but also durations of intense but

unsustained activation of all muscle groups, resulting in great energy expenditure in these brief periods.

Taking all of the results into consideration, it can be concluded that a reasonable choice of candidate sets

for weighting factors are in the range of t0.8, 0.2u-t0.6, 0.4u for this problem. These weights provide a good

balance between displacement control and energy expenditure, while maintaining the FFMR trends observed

demonstrated by the optimal displacement solution.
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(a) Cumulative contractile work done by the internal e2 orien-

tated muscle.
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(b) Cumulative contractile work done by all muscle groups.

Figure 7.9: Comparison of energy use during test case for various weightings of objective functions. The

integral value of work at time t is estimated as Wc “

ż t

0

9Wcdt “
tÿ

ts“0

9Wc
ts
∆tts.

7.5.1.2 Evaluation of multi-objective optimisation function scaling scheme

A more detailed examination of the efficacy of the linear scaling scheme used for the multi-objective optimi-

sation simulations presented above demonstrates how the optimal selection is made, as well as the nature of

the optimal solution to the given problem. Two performance metrics, namely the entirely population scores

collected over the course of a simulation and the corresponding best genomes, were examined.

The tested population score data for a non-trivial case was collected and the cumulative data for an entire

simulated plotted in figure 7.10. On average, 11.27 of a possible 16 combinations of muscle groups were

evaluated at each step, a reduction of 29.6%. It was observed that the scores for the active muscle sets were

distributed towards the extremes, with a distinct collection of good and poor choices being evaluated. This

established that, on average, a clear selection of potentially good candidates arises from the use of the GA.

This said, one must keep in mind that the distribution is made relative to the best and worst selected genome

in each population.

Further decomposition of the total scores into the contributions made from the individual objective functions

was analysed. These results demonstrate that the displacement criterion generally produces an obvious

choice in respect of a good candidate, as the dispersed distribution has very few candidates that fall into

the middle-range of scores. However, the work rate objective also has a similar distribution, which is to be

expected due to the symmetric arrangement of muscles and the geometry, as well as the uniform distribution

and properties of the muscles.

Plotting the decomposition of the scores of the best genome selected at each time-step, it is possible to de-

termine where within the average population the chosen best candidate typically resides. Figure 7.11 shows

that, in general, the genome that was considered to be the best candidate exhibited excellent position control

and energetic characteristics8. Only on rare occasions did the energy minimisation criterion lead to a solution

with poor spatial governance traits being selected.

8 Considering the nonlinearity of the scaling amongst the members of the population, optimality is difficult to define. For example, if

no muscles are active, then the score for the work rate function is always zero, i.e. the most energetically efficient choice. However,

activating a linearly increasing number of muscle groups does not necessarily result in a linear increase in the objective score, due

to the nonlinear nature of the material, the evolution of the body configuration and muscle-muscle interactions.

PAGE 116



7.5 ‚ VALIDATION OF NEURAL MODEL

0-
0.
05

0.
05
-0
.1

0.
1-
0.
15

0.
15
-0
.2

0.
2-
0.
25

0.
25
-0
.3

0.
3-
0.
35

0.
35
-0
.4

0.
4-
0.
45

0.
45
-0
.5

0.
5-
0.
55

0.
55
-0
.6

0.
6-
0.
65

0.
65
-0
.7

0.
7-
0.
75

0.
75
-0
.8

0.
8-
0.
85

0.
85
-0
.9

0.
9-
0.
95

0.
95
-1

0

5

10

15

20

25

30

1
4
.6

1
1
.3

6
.9

4
.5

3
.3

2
.6

2
.2

1
.8

1
.1

0
.9

0
.8 1
.5

1
.5 1
.7 1
.9 2
.6 3
.7

5
.6

9
.9

2
1
.6

1
9
.9

9
.8

6
.4

5
.3

2
.7

1
.8

1
.4

0
.9

0
.8

0
.7 1
.4

1
.4

1
.2 1
.5

1
.3 1
.6 2
.5

4
.1 5

3
0
.2

1
6
.6

6
.6

4
.7

3
.3

2
.7

2
.8

2
.2

1
.8

1
.9 2
.5

2
.1 2
.2

1
.7

4
.1

2
.6

4
.3 4
.5

8
.3

7
.5

1
7
.4

Bin

%
in

b
in

Overall Displacement Work-rate

Figure 7.10: Histogram of scores of the evaluated population accumulated over the entire duration of a simu-

lation of a test case. Weights for the displacement and work rate objective functions were 0.7 and

0.3 respectively. The overall score, a linear combination of the individual scores, is determined

using equation 7.22.
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Figure 7.11: Histogram of scores of the best genome accumulated over the entire duration of a simulation

of a test case. Weights for the displacement and work rate objective functions were 0.7 and 0.3

respectively. Many of the best candidates chosen with this weighting scheme exhibit excellent

position control and energetic qualities compared the alternative candidates evaluated. The few

chosen solutions with very sub-optimal displacement candidates were overly influenced by the

need for energy minimisation.
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8. IMAGING, DATA EXTRACTION AND

MODEL CONSTRUCTION

In order to create a representative model with which to carry out FEA studies, an anatomically accurate

geometric dataset was required. The Visible Human Project (VHP) provided a repository from which data of a

real specimen could be derived for geometric reconstruction. The process of data extraction and construction

of the discretised FEA model are presented in this chapter.

8.1 The Visible Human Project

The VHP [279, 257] is a digital library that provides two anatomical datasets taken from human cadavers

donated to the project. The data provided by the VHP has been used in numerous works, ranging from those

involving reconstruction of only the tongue and surrounding anatomy [243, 310, 148, 11, 85], other regions of

the anatomy [234] as well as the entire human muscular physiology [275].

The female dataset, a woman aged 59 who reportedly died of coronary heart disease [302], was produced

in 1995 and consists of over 5000 axial photographs taken at a resolution of 1
3

mm3. The photographs were

created by cryosectioning, a technique that involves the freezing of the cadaver in a cryogenic gel, after which

the body undergoes sectioning by a grinding method with a full-colour photograph of the exposed cross-

section being taken after each pass. An example of the raw images from the dataset is shown in figure 8.1.

The accompanying computerised tomography (CT) and MRI datasets were not used in this work due to the

low resolution of the images.

8.1.1 Critique of VHP in the context of this work

There are several advantages and disadvantages to using the photographic dataset in the construction of a

model of the HUA. The advantages include:

High resolution images: The quality and detail visible in the photographs assists in identifying anatomical

features and tracking their shape through the serial image slices.
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Figure 8.1: Axial slice of oral cavity and oropharynx from female VHP dataset.

Distinguishable soft tissue features: The most relevant soft tissue types are easily distinguishable in the

photographic dataset.

Visible muscle macro-histology: The resolution of the photographs ensures that the striations of the skeletal

muscle are easily visible, allowing for an accurate representation of these muscles to be made.

However, the following negative points are associated with this dataset:

Subject demographic: Although not documented, this subject most likely did not suffer OSA and would be

an unlikely candidate for such a syndrome.

Anatomical positioning: Some structures of the oral cavity and oropharynx are not in the natural position

adopted during breathing. Of most relevance is the tongue which has been raised and clamped down

by the teeth on all sides.

Unsuitability of associated CT and MRI imaging: The nature of the CT technique makes it unsuitable for

this purpose, while the same features cannot be observed in the MRI dataset due to its low resolution

(38 times lower resolution per slice, with an interval of 4mm resulting in approximately 450 times less

data per region of the anatomy).

Imaging technique: Some parts of the anatomy are not very well defined due to their colour and shade in

relation to the surrounding anatomy.

Image artifacts: Cryogenic gel infiltrated parts of the internal anatomy. Although this shows up easily in the

colour photographs, the distinction becomes less apparent when the images are viewed in black-and-

white.

Image technique and associated artifacts: The axial slicing and photographing technique results in visual

data appearing in the photograph that is not on the plane of the slice being processed. This is most

apparent in cavernous regions and results in fictitious structures inferior to the slice plane infiltrating

the image.
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8.2 Existing upper airway tissue models

Numerous models of the tongue have been developed by the biomechanics community in order to study

speech production, active muscle kinematics, respiratory mechanics, and the pathophysiology of anatomi-

cal defects and the effects of surgical interventions. These models have in common the ability to describe

individual muscle activation that produce motion due to the contraction of particular muscle groups. How-

ever, the constitutive models describing muscle contraction, as well as the degree of accuracy to which they

capture the complex underlying musculature histology, historically differ considerably.

A brief overview of relevant models of the tongue and upper airway tissues are presented.

8.2.1 Speech production and therapy

Purpose-built computational models have been developed to study the motion and shape of the tongue

during speech and vowel formation. It is interesting to note that many of the models used in the field of

speech research rely on the nodal coordinates of the computational grid to assist in the description of the

location and directionality of muscle groups. Where this is not the case, notification of this will be provided.

Wilhelms-Tricarico [311] produced a partial model1 comprised of only a directly-constrained tongue to study

speech production. The active tongue, including the SG muscles, and eight constituent muscles were sim-

ulated using a FE model comprised of 42 trilinear elements. This model, which uses a fully continuum

mechanics-based framework, has a description of the tongue histology at the computational points. An in-

compressible formulation that included the effects of viscoelasticity and inertia, as well as active muscle

contraction, was produced. It was demonstrated that the model could be used to visualise the effect of grav-

ity on the tongue, and contraction of specific muscle groups. It was shown that contraction of the SG caused

the backwards movement of the tongue, simultaneous contraction of the genioglossus anterior (GGa) and

hyoglossus (HG) resulted in lowering of the tongue and that protrusion of the tongue was performed by si-

multaneous contraction of the TV and VT. This model has since been described as ambitious, but too complex

and limiting for use in the study of speech production [87].

As opposed to a using a FEM discretisation, Honda [108] constructed a mixed FE and mass-spring model of

the tongue, hyoid, jaw and larynx to investigate articulation. The tongue musculature included both intrinsic

and extrinsic muscle groups. EMG data was used to determine the activity of major muscle groups during

the formation of vowels. Comparison was made between the experimental data and the results derived from

a neurosensory model.

Dang and Honda [50] developed a model reconstructed from volumetric MRI data to study the dynamics of

the speech organs during speech production. The midsagittal region of the tongue, hyoid, jaw and vocal tract

were represented with a 2cm thick model and the palatal and pharyngeal walls were considered rigid. The

epiglottis was not included in the model. The governing equations, which accounted for the incompressible,

inertial and viscoelastic properties of the material, were approximated using the same technique as Honda

[108]. An arrangement of the constituent muscle groups was made based on high-resolution MRI scans of the

same subject. The GG was divided into three components, and numerous other muscles (11 in total), were

1 Further information is provided in the unpublished text of Wilhelms-Tricarico [310].
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included. The functional size of each muscle unit was taken into account. Bony structures were considered

as viscoelastic materials with a very high stiffness.

Over time, Dang and Honda [51] refined this model. The spring-based model was replaced by a viscoelastic

cylinder which properly accounted for the Poisson’s ratio of the material. This model was later improved by

Fang et al. [68] by creating a fully 3-d model and describing the complete musculature of the tongue. The

model was used to analyse the muscle activations used during vowel formation and compared favourably to

EMG data. These authors suggested that multiple functional divisions of the SG exist.

A planar 39 element FEM model of the midsagittal section of the human tongue was developed by Sanguineti

et al. [244] to study tongue movements produced during speech. The domain discretisation was constructed

from X-ray data and produced such that the element orientation reflected that of the modelled muscles. It was

assumed that the position of the mandible and hyoid, both of which were not modelled but were represented

through boundary conditions applied to the tongue, were unaffected by muscle forces and that they undergo

only planar movement. A frictionless contact model was incorporated to account for interaction between the

tongue and the palatal boundary.

Three intrinsic muscles, namely the inferior longitudinal (IL), SL and VT, and three extrinsic muscles, namely

the GG, HG and SG, were represented in this model. Based on details in the published literature, different

parts of the GG, and other muscle groups, were constructed such that they could be activated independently

of other regions. The PG and the pharyngeal constrictor muscles were not incorporated into the model as the

authors consider their effect on the movement of the tongue to be negligible. Importantly, the MH and GH

were excluded on the basis that they are not anatomical constituents of the tongue itself.

From the solution to their neural control model, the activity of each muscle group required to produce the

tongue configuration was inferred and compared to EMG data. It was demonstrated that co-contraction of

muscles caused little change in tongue posture but resulted in an increase in internal muscle forces.

Sanguineti et al. [245] further developed the model described in [244]. The tongue was modelled using a

linear viscoelastic material and the jaw was considered to be a rigid body with a rotational degree-of-freedom

(DOF). The hyoid bone was modelled as a free rigid-body while the thyroid cartilage had only one DOF.

Additional maxillofacial muscles were incorporated into the model. The static assumption of the previous

work was removed, and a temporal formulation with time-dependent control parameters was introduced.

A study was performed to determine the independence of muscle units. It was concluded that larger groups

of muscle fibre bundles did not act independently, but rather responded as a singly controlled unit. As

before, a study was performed to detect the set of control parameters required to produce a configuration

(jaw, tongue, hyoid and larynx) extracted from X-ray images. It was noted that horizontal tongue movements

were more rapid than vertical movements. It was concluded that, for the muscle represented in the model,

contraction commands to the tongue and jaw synergistic muscle groups resulted in similar displacement

fields regardless of the initial configuration. This invariance of the commands effects lead the authors to

suggest that additive models might be plausible for use.

Perrier et al. [215] used a 2-d plane-strain small strain FE model of the tongue and palate. Seven muscle

groups were represented in the model and the local region stiffened by muscle contraction specified for each

individual muscle. The model was used to simulate tongue posture and trajectory during the production of

velar stop constants.
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Collaboration between Institut National Polytechnique de Grenoble and Université Joseph Fourier

Gérard et al. [85] describe a 3-d dynamic, large-strain, hyperelastic FE model of the tongue. The discretisation

of the mesh was such that adjacent elements could be used to represent eight of the main muscle groups used

during speech. Various methods for coping with model instabilities were incorporated into the nonlinear

solver. The model was used to demonstrate the role of the various components of the tongue musculature.

The model was refined further by Gérard et al. [87] to include an additional two muscles, as well as the

jaw, hyoid-bone, palate and vocal tract walls. The tongue geometry was fitted to subject-specific geometry

described from MRI data. It was demonstrated that synergistic activation of muscles could lead to realistic

deformations of the tongue, as was required to understand the tongue’s role during vowel formation.

Buchaillard et al. [29] improved the model of Gérard et al. in order to study tongue motion due to muscle ac-

tivation and gravity, as well as aspects of vowel production2. The palate, and pharyngeal and laryngeal walls

were included, as were additional muscles controlling the position of the hyoid. Due to the computational

cost of the model, a fixed number of simulations (including some simplifications) were used to probe the

relationships between motor commands, tongue posture and the acoustics of the airway. Using this model,

the motor commands needed to produce prescribed tongue postures were resolved, thus highlighting the

role of each muscle group in this regard. It was able to be discerned that certain reflexive muscle contractions

occur during tongue movement.

The latest summary of this work, presented by Perrier et al. [216], describes the inclusion of an orofacial

model, and reviews some general aspects of tongue modelling in the field of speech research.

Artisynth / OPAL

The Artisynth project3 [159] revolves around the development of a toolkit to simulate anatomical structures.

It provides an interface for developing coupled musculoskeletal and dynamic, nonlinear, viscoelastic FEM

models with the inclusion of point-to-point (force-effector) description of muscles and the inclusion of fric-

tional contact. Based on this toolkit, the OPAL project seeks to produce a comprehensive model of the upper

airway musculature, inclusive of the surrounding soft and hard tissues.

Vogt [292] developed a model of the tongue-jaw complex based on the work of Gérard et al. [87]. A FEM tech-

nique known as lumped-mass FE, or stiffness-warping, was employed to significantly reduce computational

cost. Validation of this model with respect to reference models further was presented in Vogt et al. [293].

A demonstration of matching the tongue posture to that seen in MRI images, through manually prescribed

muscle activations, was also provided.

Stavness [264] further developed these models and produced a fully-coupled model of the jaw-tongue-hyoid

complex and later an orofacial model that included the palate. Rigid-body dynamics coupled with a FEM

model was utilised to describe the dynamics of the rigid and deformable tissues. Amongst other areas of

application, predictive methods were utilised to understand the coordination of muscle activation required

to produce predefined tongue postures. Stavness et al. [263] went on to describe the development of the

tongue-jaw model.

2 Further information provided in the unpublished text Buchaillard et al. [27].
3 Further information is provided in the Fels et al. [72] and the unpublished text of van den Doel et al. [281].
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8.2.2 Movement and mobility

Wu et al. [317] constructed a FE model of the tongue as part of the Physiome project. The muscle fibre data

and tongue model, already available for the male specimen of the VHP, was refitted to conform to the fe-

male specimen on which this model was based. The mesh consisted of 10 cubic Hermetian FEs that enforced

continuity of both the field variable and its first derivative. This was thought to offer the equivalent perfor-

mance of standard element models using an larger number of elements. The muscle material was considered

incompressible and fully nonlinear anisotropic. Demonstration of individual and combined muscle activa-

tion illustrated the movement of the tongue under the influence of the active muscles. Improvements to the

model, including a more refined discretisation and the inclusion of fibre volume fraction, have since been

presented by Wang et al. [301]. In this work its application is to optimisation of sensor location for track-

ing tongue motion. Kieser et al. [141] also utilised the model in the study of the tongue’s mechanics during

swallowing.

A continuum model of the tongue and its histology was developed by Baker [11]. The physiology and his-

tology, including both intrinsic and extrinsic muscles, were identified and extracted from a photographic

dataset; however sublingual physiology was not represented. A comprehensive mesh validation study de-

termined that a large number of tetrahedral elements were required to attain convergence of tongue tip dis-

placement and the internal stresses due to active contraction. Research was conducted to understand muscle

functioning, the mechanism of swallowing, muscle activation during speech and to evaluate the effect of the

loss of function in the tongue.

8.2.3 Surgery and medical procedures

A 3-d 280 element computational model of the mouth and tongue, developed from MRI and X-ray imaging,

was produced by Rodrigues et al. [232] to simulate a laryngoscopic procedure. The geometry was restricted to

a planer section near the midsagittal line. Simulations were performed to test the effect of material parameters

on the force of contact between the tongue and the Machintosh blade required to sufficiently displace the

tongue in order to view the larynx. The outcome of procedures involving surgical complications were also

investigated.

Fujita et al. [77] investigated the range of motion of the tongue before and after the development of a tu-

mour and the resulting glossectomy, a surgical procedure commonly used to treat oral cancer. A truss-based

FE formulation, incorporating incompressibility effects, was used to simulate the tongue. The model was

constructed from MRI data. Nine muscles, subdivided into 35 functional units, were described by the line-

connection of mesh points, as was done in the articulation models. The mechanical properties of a region

within the tongue were altered to simulate the presence of the tumour and its subsequent removal. The re-

sulting model was experimentally validated and successfully demonstrated the conditions associated with

the tumour pathology.

Buchaillard et al. [28] used the model designed by Gérard et al. to understand the outcomes of a hemiglos-

sectomy and resection of the mouth floor. The bounding tissues of the oral cavity were represented by shell-

elements and contact between the tongue and these accounted for. The regions affected by the surgeries had

their mechanical properties altered. Muscle activation with differing passive tissue stiffness around the sur-

gical region were assessed to determine the effect of these properties on the tongue mobility and the ability

to articulate.
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8.2.4 Breathing, sleep and OSA

Chouly et al. [42] constructed a 2-d geometry of the tongue (corresponding to the plane-strain condition) and

retroglossal airway from pre- and post-maxillomandibular surgery radiographical data. A homogeneous,

linear, isotropic material model was used to represent tongue tissue. Air moving within the airway was

considered to be incompressible and within the laminar flow regime. The model was used to simulate pha-

ryngeal collapse related to tongue position and its constriction of the airway, and to demonstrate the effect of

mandibular advancement.

An anatomically correct, 2-d upper airway model was constructed by Huang et al. [111] to investigate OSA. It

incorporated fluid-structure interaction (FSI) and a pressure- and state-dependant muscle contraction model

for the GG . It was developed to establish a direct connection between measured EMG signals and the con-

tractile forces generated in muscle fibres. Linear elastic constitutive equations were used to model fibre strain

in the transverse direction. Here, soft tissues were considered incompressible and the fluid flow was consid-

ered laminar. The posterior pharyngeal wall was treated as being a rigid structure, while all other pharyngeal

tissues or bones were modelled as linear elastic. It was acknowledged that other upper airway muscles which

were neglected (namely dilator pharyngeal muscles), do contribute to upper airway patency during both the

sleep and awake states, and that they should be considered during the later production of a full clinical

model. They did state however that this provided a good approximation for the deformation of tissue along

the midsagittal plane.

It was demonstrated that, in the wakeful state, the relative fibre stretch of the GG at epiglottal pressures of

up to ´1275Pa was comparable with that of passive tissue under ´500Pa load. However, under the same

loading conditions while in the sleep state the GG was stretched by nearly 100% compared to the ´500Pa

passive state. A parametric study was also conducted to determine the effects of variation in the material

parameters on the results. Vibrations in the soft tissue due to fluid-interaction, indicative of snoring, were

also detected under certain conditions.

Huang et al. [112] expanded on their work, studying the collapsibility of the airway, during sleep and whilst

awake, after anatomical alterations were performed. Mandibular advancement of 1cm was found to sig-

nificantly reduce the collapsibility of the airway by increasing the negative airway pressure required for

pharyngeal closure by 780Pa. It was determined that uvulopalatopharyngoplasty (the removal of the uvula)

increased upper airway patency by altering the fluid flow in the retroglossus. Palatal stiffening, the introduc-

tion of implants of varying stiffness into the palatal tissue, was also determined to decrease the pressure that

induces airway collapse.

Huang et al. [113] later provided further information on their model when they extended it to the 3-d case.

Multiple parasagittal MRI slices from representative OSA patients were used in addition to the midsagittal

slice in order to recreate accurate geometry. The model was used to test the effect of several tongue stiffening

mechanisms on the reduction of the negative airway pressure that induces sleep apnoea.

The soft palate, uvula, tongue and epiglottis were modelled as fully deformable and a sliding-contact model

was included. The posterior pharyngeal wall was considered rigid and its geometry was modelled as anatom-

ically symmetric about the mid-line. The passive tongue and all other pharyngeal tissues and bones were

modelled as linear elastic because the strains in these regions were considered small.

Air in the pharyngeal airway was considered laminar and incompressible. The former property was applied
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because estimates of the effects of turbulence indicated it to have only minor influence on the system. The

pressure at the entrance and exit of the airway were specified. Simulation of the geometry was performed

using commercial FEA software, wherein twenty-seven noded 3-d solid elements and four node 3-d fluid

elements were used.

The impact of several surgical interventions were assessed. It was found that recession of the uvula signif-

icantly reduced the pressure of airway collapse. Tongue stiffening in the form of implants did not have as

drastic an effect, however, increasing the stiffness of the muscle in the region of the medial GG did.

A full 3-d, 24349 element FE model of the human head was produced by Liu et al. [157] to study the source

and intensity of snoring. The model, developed from a library database and anatomical literature, included

several geometric simplifications. The tongue and soft palate were considered quasi-incompressible and

viscoelastic. In subsequent tests, a sinusoidal pressure load simulating breathing was applied to the tissues

at set frequencies to induce vibration. The resulting deformation in the tissues was consistent with the natural

frequencies determined under no-load conditions.

Xu et al. [320] developed a 3-d FE model of the upper airway in rats from MRI data. The model, which

represented the tongue and soft palate as deformable tissues and accounted for contact, was prescribed a

negative airway pressure. The effect of tissue stiffening was evaluated by determining the sensitivity of

collapse pressure to changes in material parameters. It was determined that altering the tongue stiffness

greatly affected airway patency while a change in stiffness of the palate was less significant.

8.3 Defining the macroscopic anatomical dataset

A total of 1203 axial images from head and thorax datasets of the VHP were imported at their full resolution

into the commercial software Mimics c⃝ [172] for the purpose of reconstructing the anatomy of the subject.

Using this software, the set of two-dimensional colour images was transformed into a black-and-white voxel

dataset, which essentially involves “stacking” the images onto one another thereby allowing for the traversal

of the volumetric images in three dimensions. The dataset was cropped, with its extents reduced to the

region between the nasal cavity and bronchial tree, and the lips to the vertebrae. However, the images were

not rescaled due to the necessity for fibre data extraction.

The construction of the three-dimensional anatomical dataset involves a number of steps. In the first step of

the segmentation process, each part of the anatomy must be masked. This is a process in which all voxels

belonging to the described anatomical feature are differentiated from those belonging to other parts. Al-

though the software has a number of automatic tools to assist with this, the transformation from colour to

black-and-white images and the fact that the dataset originates from photographs make them unsuitable to

this application. Therefore a strategy was adopted to manually segment the part involved, initially building

a skeleton framework of the feature and then completing the details between each skeleton frame. Figure 8.2

illustrates the construction of the skeleton framework of the epiglottal cartilage.

Multiple passes for each anatomical component were made in the three planes (axial, coronal and sagittal)

in order to reduce the segmentation of image artifacts and to hinder the erroneous incorporation of incorrect

features into the part. Emphasis was placed on retaining the highest degree of anatomical accuracy possible,

with constant reference being made to the anatomical literature [2, 185, 54].
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(a) Completely masked axial slice

(b) Extents of the tissue are marked

on the coronal slice, which are dif-

ficult to visualise, have become

apparent through completion of

masks on orthogonal planes

(c) Tissue boundaries for a mid-

sagittal mask are highlighted by

completed axial masks

(d) Three-dimensional isometric

view of the completed skeleton

framework

Figure 8.2: Construction of a skeleton framework in Mimics c⃝.

Where possible and advantageous, adjacent anatomical features that have complex geometries but similar

material characteristics were joined to form a single body. Although the tongue consists of anatomically

distinct extrinsic and intrinsic muscles, the muscles located in and near the tongue body were treated as a

single continuum upon definition of the tongue body. Due to the close proximity of these muscles with one

another, dividing the volume of the tongue to keep these muscles distinct would have resulted in a mesh of

greater complexity and lower quality. An example of this is the tongue and mouth-floor complex shown in

figure 8.3a. There is no evident variation in tissue type between the base of the tongue and floor of the mouth,

and therefore no key reason to consider the two divided entities in the model. The same reasoning holds for

combining the extrinsic and intrinsic tongue muscles into the tongue body.

Following the process of extraction, filters were applied to each mask in order to ensure that no overlap be-

tween the masks of adjacent parts was present. A three-dimensional representation of the raw masks, an

example of which is depicted in figures 8.3b and 8.3c, was then generated. Contrary to the usual methodol-

ogy of volumetric reconstruction, the unsmoothed volumetric masks were directly exported as a triangular

tessellation so that the parts could be further manipulated in specialist computer-aided design (CAD) and

meshing software. This ensured that the interfaces between parts remained as close to continuous as possible

in order to assist in the reconstruction of the parts for the meshing process.

A satisfactorily comprehensive representation of the HUA, from which figure 8.4 depicts a portion of the oral

anatomy, was extracted from the image data. This allowed for the construction of not only a model of the

tissues in the HUA, but also a simplified CFD model from which to attain airway pressure data4.

4 Experimental analysis of the model is also to be performed, in a separate study, using PEPT. A solid representation of the airway

is to be constructed using rapid prototyping and a study of the flow of air through the upper airway is to be conducted. Advances

in PEPT technology also allow for the tracking of surfaces, conceptually facilitating the validation of models of passive tissue
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(a) Segmentation of tongue anatomy (midsagittal

plane)

(b) Midsagittal view of recon-

structed tongue

(c) Coronal view of reconstructed tongue

Figure 8.3: Extraction of anatomical data in Mimics c⃝. Figure 8.3c demonstrates that glandular tissue regions

on the lateral extents of the tongue have been included in the bulk region of the tongue.

(a) Anterior view (b) Sagittal view

Figure 8.4: The completed reconstruction of the imaging dataset showing the upper airway anatomy and

micro-histology.

8.4 Defining the microscopic fibre dataset

The tongue is a histologically complex organ comprising, amongst other things, numerous interwoven mus-

cle groups. Visible in the reconstructed high-resolution dataset was the gross directionality of the muscle

groups that constitute the body of the tongue and mouth floor. Fibre data for each muscle group were defined

in Mimics c⃝ by manually selecting sections of each muscle group that had a similar directionality. Muscle

groups that were not highly visible in the photographs were extracted with consulting of the anatomical

displacement in the presence of a complex pressure distribution.
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literature [54, 185, 2].

Figure 8.5a demonstrates the process in the orientation definition of fibre bundles for the medial portion of

the fan-shaped GG. Here it was assumed that all fibres within each cylindrical bounding box have a similar

orientation. Cylinders are made to overlap so as to ensure that all possible points that contain muscle fibres

are enclosed by one or more cylinders. The overlap also assisted in artificially providing curvature to the

dataset when it is interpolated onto the grid. This process is described in section 8.5.1.

(a) Definition of GGp muscle fibre position and

direction data (midsagittal plane)

(b) Three-dimensional representation of cylin-

ders defining a muscle group

Figure 8.5: Extraction of fibre data in Mimics c⃝.

In some parts of the muscle, the fibre alignment was such that large regions of the muscle could be approxi-

mated by a single cylinder having the same directionality. However, certain muscles such as the VT and TV

have a very complex physiology and therefore required a more intricate description. Figure 8.6a illustrates

the detail that was required in order to provide a sufficiently accurate account of the underlying histology of

these muscles.

(a) The VT has a complex directionality (b) The DG has an origin external to the bulk

muscle body

Figure 8.6: Cylinder representation of muscles with complex histological descriptions.

Although the final solid model of the tongue was ultimately constructed so as to exclude certain external

muscle groups, the directional description of these muscles was still captured in full. Figure 8.6b depicts the

three-dimensional representation of the DG, with portions of the muscle inside and outside the main body

of the tongue and mouth floor. In the muscle model used to describe the effect of these external models, the
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point of origin of the muscle was chosen to be a point at which the cylinders terminated near the surface to

which the muscle is attached at its origin.

Depicted later in section 8.6, a total of 18 unique muscle groups with differentiation between left- and right-

side muscles were originally represented by 3377 individually orientated geometric primitives. Six of these

muscle groups originate from a fixed anatomical structure that is external to the tongue body.

8.5 Construction of the discretised solid model

The tessellations of the anatomical data were subsequently imported into ICEMCFD c⃝ [4] for surface defini-

tion, assembly and meshing. Standard literature in human physiology [54, 185, 2] again was used to ensure

that the integrity of the model was adequately preserved. Figure 8.7 highlights the extent of the model pro-

duced.

(a) Sagittal view (b) Coronal view

Figure 8.7: Representation of the completely reconstructed HUA by parametric surfaces in CAD software.
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Before the tissue model was constructed, a number of potential complications had to be considered. A con-

straint of the FEA library used in the analysis process is that only hexahedral elements are supported. This

limitation had to be considered at all steps of the reconstruction process. Additionally, the algorithm used

to address the macro- and micro-morphology of muscles also had to be considered as it was likely to dictate

how some portions of the geometry were created.

The surface geometry of the macro-scale anatomical parts was created manually by placing control points

on selected surfaces of the tessellated parts. These control points were then joined by splined curves, which

ultimately formed boundaries for closed parametric surfaces. An illustration of the reconstruction process is

shown in figure 8.8. The surface definitions were iteratively modified to best fit the underlying tessellation

while ultimately catering for the requirements of the meshing process that followed. Due to the orientation

of the tongue and some of the abnormalities of the anatomy, some features required excessive simplification

or modification. This is discussed in appendix E.2.

Discussed in section 3.7 were the complications involved with the incorporation of certain aspects of the

HUA physiology in a simple model. The use of motion-dependent boundary conditions for muscular tissue

allowed the volumes of some muscles to be discarded from the model. Figures 8.8b and 8.8c illustrate the

removal of the SG, resulting in a simplified geometry of the tongue. Although the physical representation of

the muscle is compromised, the action of the muscle external to the body of the tongue remains captured in

the muscle model.

(a) Voxel description of the tongue from

ICEMCFD c⃝

(b) Parametric surface description of the

tongue surface

(c) Tongue surface simplification

by removal of the SG

Figure 8.8: Geometry reconstruction in ICEMCFD c⃝ of raw data extracted in Mimics c⃝.

The fully-structured hexahedral mesh was created using a blocking technique, where connected master-

blocks are positioned throughout each part in order to describe the coarse topology of the discretisation.

An example of the underlying blocking strategy leading to the meshed components of the tissue model are

shown in figure 8.9. Rules governing the point and line constraints for the mesh, as well as mesh size, were

applied and a preliminary mesh produced. Upon discretisation, the master-blocks were subdivided and the

mesh projected to the surface of each part in order to produce the discrete geometry. Smoothing operations

were subsequently performed in order to increase the quality of the initial mesh.

It should be noted that, due to the nature of the muscle model used in this work, the mesh was able to be

generated entirely independent of the underlying micro-scale physiology associated with the anatomy. This

allowed the mesh to capture the details of the anatomy without any restriction on mesh directionality, thereby
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(a) Blocking in ICEMCFD c⃝. Black lines indi-

cate lines that will project mesh to a surface

and blue lines produce internal mesh ele-

ments.

(b) Sagittal section of mesh resulting from the

discretisation of blocks and projection of

mesh onto surfaces

Figure 8.9: Part and volume discretisation during geometry reconstruction in ICEMCFD c⃝.

avoiding a limitation imposed on some of the geometries described in the literature. The superposition of the

micro-histological data on the discretised domain is discussed in section 8.5.1.

8.5.1 Importing the fibre data into the solid model

The dataset of the micro-scale fibre directionality was subsequently imported into the macro-scale geometry,

providing a perfect match between them. Due to the general constitutive framework given in section 5.1, the

description of the muscle model described in chapter 6, and the fact that the fibre and anatomical datasets

correspond exactly, there was no requirement for the mesh to align with the direction of any of the underlying

fibre groups. The underlying muscle histology data was interpolated directly onto the constructed mesh.

The data extracted from Mimics c⃝ consisted of the radius and end-points of each fibre-cylinder. A method

expressed graphically in figure 8.10 was implemented to determine whether any point in the geometry was

within the boundaries of a muscle group, as defined by the collection of relevant representative cylinders.

C2

C1

P

X

l

p

r

Figure 8.10: Geometric test for containment of point within a cylindrical volume

Given any point X and the fundamental information required to express the bounds of a cylinder that de-

scribes a portion of a muscle, namely the end-points C1,C2 and radius r, then the projection of X onto the

cylinder axis is given by

P “ C1 ` pX ´ C1q ¨
l

}l}
(8.1)
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where the cylinder length vector is defined by

l “ C2 ´ C1 (8.2)

and the projection vector given by

p “ X ´ P . (8.3)

If the point X lies outside the bounds of the cylinder then the length of the projection is greater than the

radius

}p} ą r (8.4)

or the projection lies outside the cylinder end-points

pP ´ C1q ¨ l ă 0 or pP ´ C1q ¨ l ą l ¨ l . (8.5)

If the point was within the bounds of the muscle, the direction of the muscle fibre (as defined by the cylinder

end points) was recorded. When the point was within a region of overlap where more than one cylinder

contained the point, the average of the direction vectors was taken to be the fibre direction. This averaging

process resulted in a smooth transition of the fibre direction in regions of curvature of the muscle group.

When the muscles traversed the boundary of a part of the anatomy, the fibre volumes output from Mimics c⃝

extended into the adjacent areas. During the discretisation process, an identification number was given to

the various anatomical parts, and was subsequently used as a filter to ensure that the fibres were specified in

the relevant muscular regions and did not erroneously continue into adjacent volumes.

When viewed from an in vivo perspective, the definition of the fibre direction is somewhat arbitrary for a

one-dimensional force-generating element. This is to say that the action of a fibre with the alignment n is

the equivalent to that of one with the opposite direction ´n. However, the geometric description required

a preferred directionality to be described. Because of this requirement, care was taken during the direction

interpolation procedure as vector addition (which is direction sensitive) was used to perform the operation.

The alignment of the cylinders with respect to one another was inspected and it was ensured that the vectors

used to express fibre-directionality did not conflict through misalignment, that is nfi ¨ nfj ą 0 @ fi, fj P

BM, i ‰ j. This was achieved in a preprocessing step, where all cylinders in each muscle group were checked

and altered such that they satisfied either a dot or curl type constraint, depending on the muscle histology

(radial/linear vs circumferential).

In section 8.5, the reason for the removal of muscles, such as the SG that had portions of their volume outside

of the body on which they exert most influence, was presented. For these muscle groups, their point of origin

was defined a priori and the point of insertion into the muscle body was marked as the region of the surface

of the tongue that contained an adjacent internal muscle fibre of the same muscle type. In this manner, a

continuous description from the interior to the exterior portion of the muscle was created.

8.6 Presentation of a representative model of the tongue and surround-

ing soft tissues

There is a great morphological variability between individuals in vivo. Embracing this variability with realis-

tic boundary conditions is likely to be a challenge. There are numerous points of contact between parts of the
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anatomy, and because tissues move past one another as well as support one another, these is no clear way to

represent the boundaries in simplified models without imposing unrealistic constraints on the movement of

the anatomy. Furthermore, some simplifications of the geometry itself require special considerations when it

comes to the imposition of boundary forces on a particular part of the model. In the following paragraphs,

the reduced model describing a sample of the HUA geometry are presented along with prescribed boundary

conditions (BC) imposed on the model. The full tissue model from which this geometry was extracted is

showcased in appendix I.1.

In figure 8.11, the model of the tongue, hyoid bone, epiglottis and the fat-pad on which it is bedded and the

inner portion of the mandible are shown. It is assumed that the head remains still throughout the simulated

period thus keeping the gravitational orientation and relative distances between fixture points constant. The

inner part of the mandible (to which the tongue is affixed) as well as the interface between the epiglottal

fat-pad and the thyroid cartilage, which represent fixture points, were therefore fully-constrained.

S

I

A
P
L

R
θ

(a) Front isometric view

PA
PB

PC

PD PE

(b) Rear isometric view

Figure 8.11: Discretised model model of tongue and surrounding soft tissues. Part of the mandible and hyoid

are shown in grey, the tongue in pink, the epiglottal cartilage in magenta and adipose tissue in

yellow. The blue-shaded regions highlight nodes that have essential boundary conditions and

remain at all times stationary. The position of active control points for neural model are marked

with the red spheres.

The exposed surface of the tongue, epiglottis and the adipose tissue (highlighted in figure 8.12) are subject

to the static pressure distribution of the surrounding air. The pressure applied to these surfaces is prescribed

using either a spatially-correlated function, or data directly extracted from CFD models. Due to some simpli-

fications present in the fluid model, there is direct special consideration for regions that have had anatomy

removed and are artificially exposed to the influence of the air (i.e. regions of tongue where lateral sublingual

glands should connect to the mandible, clearly visible in figure 8.3c).

Figure 8.13 presents an overview of the muscles and fibre directionality incorporated into the model of the

tongue. In figure 8.13a, it can be seen that the GG was represented by three independently controlled func-

tional units, namely the anterior, medial and posterior components, as discussed by Miyawaki et al. [183]5

5 They state that if such a decomposition exists, then it is not understood if we have voluntary control over the each individual

component.
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(a) Anterior lateral isometric view (b) Posterior lateral isometric view

Figure 8.12: Geometry of the soft tissue model highlighting the location of surfaces subject to Neumann

boundary conditions. Element faces considered to constitute the anterior, left lateral, superior

and anterior surfaces of the tongue are highlighted in yellow, blue, green and red respectively.

Other tissues in the retroglossus exposed to airway pressures are indicated by a grey overlay.

The surface interface Γtpuq
0 for external muscle groups are marked with dotted lines.

and used elsewhere Dang and Honda [50], Gérard et al. [85], Buchaillard et al. [29]. The activity of the GG

has been shown to be somewhat heterogeneous [60], so this assumption along with that of the underlying

fibre density will ensure that the local effective contractile activity is non-uniform. Due to the neurological

(as opposed to physiological) nature of the division of the GG, it is not discussed in Davies [54] or other

physiology literature.

8.6.1 Measurement points for neural control algorithm

Ten control points6 were selected to form a coarse net defining the superior and posterior surfaces of the

tongue. The points, depicted in figure 8.11, were at the apex of the tongue, on the superior surface of the

tongue (both at the intersection of the posterior and superior surface and half-way between the posterior

surface and apex), and half-way up the posterior surface of the tongue. The points were monitored on the

midsagittal line, as well as lateral to the midplane. Control points located on the epiglottis, with weighting

values wp “ 0, were used to monitor the displacement without influencing the neural algorithm.

8.6.2 Body forces

All tissues experience a body force due to their mass. The direction of the gravitational load depends on

alignment of the body, namely whether the person is in an upright stance, laying supine or in some other

6 The location of the chosen measurement points was a design decision, with the dispersed net of points assumed to ensure that the

movement of the entire tongue body would be considered and controlled. Should corroboratory experimental data be available, it

would be sensible to position a control point upon the corresponding position of the sensor. The concepts presented by Wang et al.

[301] are relevant for the improvement of their location for both simulation and experimental purposes. Further discussion of the

selection of the control points is presented in appendix G.2.
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(a) GGa (blue), GGm (yellow) and GGp (red); GH (green) (b) IL (blue) and SL (yellow); VT (red)

(c) HG (blue); MH (green); TV (red) (d) DG (blue); SG (yellow); SH (red)

Figure 8.13: Geometric description of the tongue musculature. Each cylinder within the tongue body repre-

sents the average directionality of eight fibres embedded within a computational cell. Overall,

13 neurologically-distinct muscle groups are represented, with 5 of them having two compo-

nents divided laterally on the midsagittal plane. The portion of the PG inserted into the tongue

posterior was ignored.

configuration. In general, we express the gravitational force vector (with units m{s2) in the form

g pθ, tq “ 9.81 cg ptq ĝ pθq (8.6)

where cg is a function of the time and θ represents the angle of incline7 measured from the horizontal position.

With reference to the axes accompanying figure 8.11, the gravitational vector ĝ pθq is aligned in the posterior

direction when θ “ 0˝ and in the inferior direction when θ “ 90˝. Special cases were used to represent lying

in the prone or lateral positions.

7 Under normal circumstances, pillow height is responsible for the variation of the head’s position while sleeping on one’s back.
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8.6.3 Airway loading distribution

On that region of the natural boundary ΓtpXq
0 that is exposed to the airway, a pressure load generated due

to expansion and contraction of the lungs is applied. The surface traction, multiplicatively decomposed into

temporal and spatially dependent components, is defined as

t pX, tq “ pnom cp ptqhp pXq n̂ , (8.7)

where pnom is the nominal value for the applied pressure. The spatial function hp is defined such that the

nominal pressure and the epiglottal pressure, often referred to in the literature and assumed to be measured

at PE , coincide. The form of cp and hp are presented below.

8.6.3.1 Temporal description for quasi-static conditions

The dimensionless temporal domain is decomposed into two parts. In the first half of the domain, gravi-

tational loading occurs without the presence of airway pressure while in the second, the gravitational load

remains constant and the pressure load is linearly increased. The gravitational and pressure force constants

are in these instances defined by

cg :“

$
&

%
2t if t P r0, 0.5q

1 if t P r0.5, 1s
, cp :“

$
&

%
0 if t P r0, 0.5q

2t ´ 1 if t P r0.5, 1s .
(8.8)

8.6.3.2 Temporal description of loads for dynamic conditions

In the instance of dynamic loading, a gravitational preload is still applied. However the periodic pressure

load, now a true function of time, is given by

cp :“ a psinπt˚q
e , t˚ “ b

pt ´ cq mod w

w
, (8.9)

where w gives the oscillation period and the exponent e “ 1.75, is applied over a finite time domain.

Manipulations of equation 8.9 through the time-dependent functions a, b, c result in functions that mimic

a representative sample of pressure data, limited to the inhalation potion of the breathing cycles, obtained

from [165, 261, 221]. Similar representations of the temporal nature of inlet conditions have been used in

CFD models (see [266, fig. 3 and 4],[328, fig. 2], [319, fig. 2F],[296, fig. 1]). As the modular arithmetic results

in a positive value for the sinusoidal function, the piecewise step function a accounts for the pressure sign

change between inhalation and exhalation and allows for rest-periods between cycles to be introduced. The

function c provides a phase-shift for the sinusoidal function, and b allows for the possibility to alter the rate

of change of pressure in various parts of the breathing cycle. This general form of temporal function provides

a smooth transition (zero first-derivative) between inhalation and exhalation. In figure 8.14, three examples

of temporal loading patterns generated with equation 8.9 as a template are illustrated.

8.6.3.3 Spatial description of airway-induced loading

Using the spatial function in equation 8.7, first-approximations of the pressure profile for nasal and oral

breathing are described. It is assumed that during nasal breathing, the pressure field in the oral cavity is
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Figure 8.14: Temporal curves for cp representing different breathing patterns.

constant, resulting in no fluid motion within it. However, pressure losses are still incurred in the nasal

passage (inhalation) or trachea and glottis (expiration), and the average pressure is non-atmospheric. In this

case, the spatial function is simply

hp :“ 1 . (8.10)

In the case of oral breathing, the mouth is open and fluid moves over the surface of the tongue in the narrow

gap between it and the oral cavity extents. Defining two points in the geometry, namely PA and PE shown

in figure 8.12, we approximate the pressure difference in this gap as

hp :“

$
’’’&

’’’%

0 if X2 ą PA
2

1 if X2 ă PE
2

ˇ̌
X2 ´ PA

2

ˇ̌
{
ˇ̌
PE

2 ´ PA
2

ˇ̌
otherwise .

(8.11)

A linear variation of the pressure field in the anteroposterior direction is assumed and that the pressure

gradient in the transverse direction is zero.

A third scenario to consider is that of nasal breathing with open mouth. In this situation, the tongue is pressed

against the palate to form a seal, but the mouth can open to equalise the pressure in the oral cavity. The

pressure in the oral cavity is thus atmospheric, while the posterior of the tongue is exposed to the pressure of

the retropharynx. The function

hp :“

$
&

%
0 if X2 ą PC

2

1 if X2 ă otherwise
(8.12)

approximates this pressure field.

To demonstrate the overall result of the pressure function (equation 8.7), consider figure 8.15 which shows

the measured area-averaged pressure over a patch on the anterior, superior and posterior surfaces of the

tongue for a single inhalation for both breathing mechanisms. For all spatial profiles hp, the epiglottal pres-

sure pepi “ p pPEq “ ´pnom. For this single inhalation, the specified negative airway pressure changes in a

sinusoidal profile with time. When inhalation occurs through the nose, the pressure field is constant. How-

ever, when oral inhalation is simulated, there exists a pressure difference between the anterior and posterior

surfaces of the tongue. The anterior region of the tongue, being furthest forward in the mouth and open to

the atmosphere, experiences the highest pressure. The pressure decreases towards the rear of the oral cavity
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(a) Nasal breathing
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(b) Oral breathing

Figure 8.15: Computed area-weighted average pressure on various regions of the tongue surface during in-

halation. In these cases pnom “ 500Pa.

where the posterior surface of the tongue, exposed to the retroglossal space, experiences low pressure. The

superior and lateral surfaces of the tongue, which extend in the transverse plane, experience an intermediate

average pressure of nearly half of that of the posterior surface.

8.7 Existing CFD studies of the upper airway

The study of airflow and the development of flow structures in the HUA is a very complex field of study in its

own right. The spectrum of work performed in the area of upper airway fluid mechanics includes the study

of flow structures, sleep disorders, aerosol deposition and lung mechanics, to name a few. The description of

a representative geometry, be it idealised or patient-specific, the mathematical equations governing fluid flow

and their associated boundary conditions, and mechanisms to capture the flow structures that influence the

flow-field all remain difficult issues to overcome. A recent review by Pollard et al. [223] provides an excellent

summary of the challenges involved in this area, as well as the state of experimental and computational

research. Here, a brief overview of some of the relevant work in this field, and in particular that pertaining

to the research of OSA, is provided. One of the key conclusions to be made from this review is that the

methodologies used in each work was dramatically different, with no definitive choice in respect of any

model construction or simulation being made. This was due to the nature of each study, its desired outcome

and the technologies available at the time at which the work was conducted. Ultimately, it appears that

best judgment stemming from the insights of previously performed work had to be exercised to produce a

functional model for this work.

The flow structures present in the airway depend greatly on the geometry and breathing mechanism. The

fluid-dynamics pertaining to oral breathing and air flow in the mouth and pharynx was presented in [12, 46,

195, 196], while involvement of the complex nasal cavities during nasal breathing was detailed in [139, 147,

156, 188, 305, 307, 325]. Mention of the flow developed in the pharynx due to nasal respiration was described

in [217, 242].

Investigations into the nature and possible causes of OSA under the conditions of nasal inhalation were con-

ducted by [132, 267, 319, 266, 298, 300] using models that included both the nasal and pharyngeal geometries.

Simplified models, consisting of simply the pharynx, were utilised by [252, 161, 177] to conduct similar stud-
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ies. Pre-surgical analysis and post-operative outcomes of OSA were evaluated by [119, 255] using models

of the pharynx. More complex models were constructed by [67, 128, 299] to determine the effect of surgical

procedures on airway fluid-dynamics during nasal breathing. Treatment of the OSA condition with oral de-

vices was studied during oral [56] and nasal [327, 285] respiration. Fluid-structure interaction models were

developed to determine the motion of the passive soft palate [41, 328], the consequences of surgery on airway

and tissue dynamics [300] and study geometric influences on the presentation of OSA [111, 266].

Although the finite volume method (FVM) is the overwhelmingly popular choice in this area for solving

the Navier-Stokes equations, the Lattice-Boltzmann method (LBM) has also been used successfully [12] in

this regard. The studies considered here primarily consist steady state simulations, although a few time-

dependent simulations [266, 328, 325] have been conducted. Lee et al. [147] demonstrated that, for the most

part, qualitatively similar results could be obtained for steady state simulations that match the pressure con-

ditions at a given instant in an unsteady simulation. Some of the work considers only idealised geometries

(e.g. [12]), while realistic geometries, extracted using CT imaging or MRI, have also been considered. Collins

et al. [46] determined that idealised geometries that included sharp edges produced inadequate results when

compared to a realistic representation of the same geometry.

As in many other fields of application, large eddy simulation (LES), detached eddy simulation (DES) and

direct numerical simulation (DNS), which are very computationally expensive, provide the best mechanism

to resolve turbulent structures in the airways. Since these structures have a large influence on the pressure

profile that develops in the oropharynx, adequate approximation of the effect of their presence is necessary.

Work performed to compare the effect of choice of turbulence model in either nasal or oropharyngeal simula-

tions include that of [252, 262, 12, 177, 132]. Collectively, these studies have demonstrated certain deficiencies

with regard to RANS models predicting flow structures in the upper airway. However, it has been demon-

strated that the k-ω model [188], in particular the low-Reynold’s number (Re) shear-stress transport (SST)

variant [177, 326], which has been developed specifically for transitional flow, produces reasonable results.

Meshing techniques are biased towards the use of fully unstructured meshes, primarily due to the complex-

ity of the airway physiology. Saksono et al. [242] discussed the possibilities of using semi-automated mech-

anisms of producing high-quality airway geometries. Grid convergence studies performed by Jayaraju et al.

[131] showed that velocity and pressure field convergence on the midsagittal plane could be obtained in a

model of the glottis with 550000 cells. Wen et al. [307] demonstrated that 950000 cells provided a compromise

between computational expense and accuracy in a nasal cavity model.

The extent of the geometry differs greatly between each model, as the focus of interest varies between stud-

ies. Nasal models may include an inlet extension [128], although some are truncated at the vestibules [139]

or represent the facial geometry and far-field atmospheric conditions [328]. Similarly, many models that rep-

resent the oral cavity include an extension to the atmosphere [12]. Pharyngeal models may be truncated in

the vicinity of the choanae or velopharynx [217]. Inlet boundaries have been defined using a velocity profile

[195], prescribed pressure [266] or volume flow rate [305]. The position of the downstream boundary differs

between models; it may be found in the upper pharynx [266], at the position of the larynx [300], in the lower

trachea before the tracheal bifurcation [195] or distally after a number of bifurcations [242]. Boundary condi-

tions have been implemented in a variety of manners, and in many cases are limited by the description of the

geometry at the inlet and outlet. Choices for outlet boundaries include defining the pressure [242], velocity

profile [328] or using an outflow [307] condition. Although techniques exist to simulate the presence of mul-

tiple bronchial branches in the lungs [296, 297, 169], a consideration which impacts greatly on the upstream

pressure field, the majority of work surveyed truncates the airway well upstream of the lungs . In most cases,
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walls have been considered as zero-slip boundaries.

8.8 Construction of the fluid model

In construction of the airway, the interior boundaries of the solid model define the anatomical boundary of

the fluid domain in the regions of the oral cavity and pharynx. Additional anatomical features not repre-

sented in the solid model were considered in the construction of the fluid model. Figure 8.16 provides an

overview of the fluid domain created from the geometry shown previously in figure 8.7. The sublingual and

submandibular glands were ignored in the construction of the solid model but were integrated in a crude

manner by preventing fluid flow into this anatomical region. The constriction of the larynx, the trachea and

first branch of the main bronchi were also modelled, as the downstream flow field influences the upstream

pressure field of the oropharynx.

(a) Midsagittal view (b) Transverse view

Figure 8.16: Geometric reconstruction of the fluid domain.

Due to the complex structure of the nasal passages and the difficulty in accurately extracting the passages

from the photographic data, a coarse representation of their anatomy was produced. The approximate struc-

ture and dimension of the nasal passages were extracted from the imaging data through the reconstruction of

a skeleton framework. Using the technique demonstrated by Zhang et al. [325], a greatly simplified represen-

tation of the the nasal canal that could be easily meshed and which was hypothesised to produce represen-

tative results was constructed. The gross anatomy of the nasal passages, including the position of the nasal

vestibules, the width and height of the passage adjacent to the nasal septum, and the opening and length of

the superior and inferior meatuses, was retained. However, the curvature of the anatomy was not captured.

The simplified geometry of channels of the nose are illustrated in figure 8.17.
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(a) Isometric view of surfaces used to approximate nasal passages and na-

sopharynx

(b) Coronal view of right nasal passage with discreti-

sation highlighted

Figure 8.17: Geometric reconstruction of the nasal passages involved the creation of a simplified model for

the geometrically intricate nasal passages.

LVP

Figure 8.18: The external muscles of the soft palate, which obstruct airflow in the nasopharynx, were cap-

tured during reconstruction.

The extrinsic muscles of the soft palate, specifically the LVP, insert into the uvula and cause a flow obstruction

for the air moving though the nasopharynx. As shown in figure 8.18, it was included as a boundary in the

fluid model as it was felt that it may play a significant role in the channelling of the flow over the uvula.

In figure 8.19, a comparison is made between the nasopharynx, oropharynx and hypopharynx geometry ex-

tracted from the VHP dataset and one obtained directly by experimental methods. The overall fluid geometry

embraced all of the core anatomical features that affect the fluid flow. However, due to the difficulties of us-

ing the photographic dataset and the uncertainties associated with the positioning of some of the tissues, the

model of the pharynx had a CSA that appears to be on the upper limit of-, and in some regions exceeding,

that measured and presented in the literature8. Specifically, the lateral dimension of the oropharynx appears

visually larger in figure 8.19b when compared to figure 8.19a; however, it is comparable to other geometries

in the literature (see [196, fig. 6]) and of the same scale of the posterior section of the tongue.

8 This point is discussed in appendix E.2.
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(a) Reconstructed pharynx from a cone-beam CT

scan

tongue posterior

(b) Pharyngeal region of model created in

ICEMCFD c⃝

Figure 8.19: The geometry reconstruction of the oropharynx resulted in a model that does not compare well

with experimental data. From a visual inspection between figure 8.19a and the geometry shown

in figure 8.19b, it is observed that the lateral dimension of the oropharynx has to be large to

accommodate the width of the tongue. Figure 8.19a sourced from Grauer et al. [93].

As can be seen in figure 8.16, the airway was subdivided into a number of regions and different discretisation

techniques were employed in each region according to its geometry. The nasal passages, oral cavity and lower

trachea contained a fully structured mesh, while the oropharynx, nasopharynx, hypopharynx and upper

trachea were meshed using an unstructured technique resulting in a tetrahedral mesh. This process resulted

in the generation of discontinuous meshes, which were made conformal through the use of a mesh-merge

technique. This produced a hybrid mesh with 5-noded prism elements at the interfaces of the structured

and unstructured meshes. The prism and tetrahedral elements were subsequently converted into polyhedral

elements in the CFD solver in order to reduce the element count and significantly increase the overall quality

of the mesh.

8.8.1 Fluid boundary conditions

The boundary conditions used in conjunction with the fluid model were subject to a number of assumptions

and simplifications. Depending on the type of breathing being modelled, the inlets either are exposed to

atmospheric pressures or blocked off using a wall boundary condition (BC). As inhalation is to be simulated,

a pressure inlet BC with 0Pa gauge pressure was utilised. Ideally, the atmosphere should be modelled as a

reservoir, but this provides complexity in producing a flexible model that can simulate both oral and nasal

inhalation and exhalation. A velocity BC was prescribed at the bronchi which allowed for the specification of

the volumetric flow rate. Simple inlet and outlet extensions provide some allowance for flow development

and reduce the effect that the imposition of constraints on the flow at the boundary has on the upstream flow.
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All soft and hard tissues are considered completely rigid and are prescribed a zero-slip wall condition.

8.8.2 Anthropomorphic measurements of airway geometry

An account of the CSA of the airway is presented in figure 8.20, together with reviews of similar data derived

from the published literature as an aid for comparison. Measurements of the model, only possible after the

complete meshed model was produced, are graphically presented in figures 8.20b to 8.20d, with the planes

on which the measurements were taken depicted in figure 8.20a.

(a) Coronal measurement planes for nasal (green), buccal (blue) and pha-

ryngeal (red) regions
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(b) Nasal passages and nasopharynx
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(c) Oral cavity.
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(d) Pharynx

Figure 8.20: Measurement of the CSA of the reconstructed HUA. The data extracted from the literature was

manipulated to such that the marked features of each dataset aligned. In the data from McRob-

bie et al. [175] presented in figure 8.20c, no anatomical markers were present and the data scale

was thus assumed. Liu et al. [156] further depict the plausible range of anthropomorphic mea-

surements for the nasal cavity geometry.

As demonstrated in figure 8.20b, the reconstructed and simplified structure of the nasal passages resulted in

a model that was representative of the CSA data presented in the literature [273, 307, 265, 40, 139]. Along the

length of the nasal passage, the change in CSA mimics that captured through experimental methods on a va-

riety of subjects. It is noted that the nasal passage narrows towards the opening of the nasopharynx, a feature

not observed in prior published data. However, compared to a sample of 60 measurements conducted by Liu
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et al. [156], the nasal passage CSA remains within the bounds observed using experimental techniques. The

comparison shown in figure 8.20c illustrates that the oral cavity has a CSA profile almost clear of anatomical

landmarks, consistent with that experimentally measured by McRobbie et al. [175]. It should be noted that

the overall posture of the tongue in the oral cavity is significantly different in these two cases, and the inclu-

sion of air space on the lateral and posterior aspects of the tongue result in an increased CSA of this geometry.

In figure 8.20d, it is clear that the positioning of the tongue, oropharyngeal walls and other soft tissues does

not make for an accurate representation of the pharyngeal region of the HUA. Although the measured region

of the oropharynx does extend marginally into the oral cavity (as seen in figure 8.20a), the CSA of the airway

from the velopharynx to the larynx appears significantly greater than that presented in the literature. The

profile provided by McRobbie et al. [175] suggests that the airway that is represented in this geometry is

greatly exaggerated in terms of the flow area, but the profile for the change in CSA is likely to be accurate.

As highlighted in table 8.1, the CSA of the velopharynx is near the upper value provided for a mild OSA

patient by Ryan et al. [239], while the maximum measured CSA in the pharynx again greatly exceeds the

value of 402mm2 for healthy subjects determined experimentally by Avrahami and Englender [6] . The

primary contributing factors to this inaccuracy are the protrusion of the tongue, resulting in an excessive

anteroposterior dimension and the inaccurate representation of the oropharyngeal walls manifesting as an

excessive lateral measurement.

Table 8.1: Measurement comparison between airway model and Ryan et al. [239] highlights some of the

short-comings of the geometric model that has been developed.

Region
Reconstructed Ryan1999

model ave min max

Cross-sectional area (mm2)

Velopharynx 139.94 96 43 281

Oropharynx 681.46 103 39 235

Hypopharynx 610.9 67 12 237

Anteroposterior diameter (mm)

Velopharynx 3.48 7.8 4.7 19.9

Oropharynx 11.89 9.6 4.2 15.1

Hypopharynx 7.89 9.4 3 12.5

Lateral diameter (mm)

Velopharynx 20.89 14.5 7.4 28.1

Oropharynx 41.78 17.4 11.9 22.2

Hypopharynx 49.1 11.6 5.3 24.3

Furthermore, a brief survey of the literature containing airway measurements of OSA sufferers [198, 6, 7, 239]

illustrates that the geometry is not at all representative of such an individual. In these cases, the CSA of

the oropharynx is a fraction9 of that listed above. Importantly, the minimal anteroposterior diameter in the

oropharynx (measured between the tongue and retropharyngeal wall) is within the range cited by Ryan et al.

[239]. The anteroposterior distance between PC on the tongue and the retropharyngeal wall is approximately

9 The measurements differ greatly in each case and for each site of measurement, but in the typical lowest measurement (severe

OSA) for the oropharynx CSA is on the order of 10 ´ 50mm2 (location of measurement planes unlisted in literature).
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17mm. Along this line of measurement, the gap between the tongue and inferior surface of the uvula (which

has a thickness of approximately 5.5mm) is 3.5mm.

8.9 Critique of the author’s constructed models

Each individual has a distinctive anatomy and thus the anthropomorphic features presented in this model,

although not exactly mirroring those seen in the standard medical and scientific literature, are not invalidated

as a consequence.

A full discussion with regard to the construction of each of the author’s models is presented in appendix E.

However, at this juncture an overview is considered warranted. There are numerous factors that influenced

the observed differences between measurements taken from the reconstructed geometry and experimental

data. The use of photographic images made distinguishing different tissue groups difficult. Some modifi-

cations were made to reverse soft tissue deformation of the tongue by the surrounding anatomy. Further

simplifications and modifications to the geometry and incorporated tissue types were necessary to assist in

the design of a high-quality computational domain for use within the developed framework. Difficulties

in determining the position of the oropharyngeal walls introduced potential error in the reconstructed fluid

geometry. The difference in conditions experienced during in vivo data extraction presented in the literature

and the VHP dataset could account for a significant portion of the measurement error; for example, McRob-

bie et al. [175] conducted measurements on a live subject, resting in a supine position during free breathing,

while the VHP dataset is of a cadaver. With regard to the reconstructed geometry, the forward posture of

the tongue increases the volume of the oropharyngeal space and may also cause the anterior displacement of

other soft tissues, such as the epiglottis, similar to that observed was the use of MADs thereby reducing the

potential for pharyngeal collapse.

Overall it is concluded that this airway model is not representative of a subject with OSA. Due to the com-

plexities in the production of the model, the lack of truly representative experimentally derived data, and

that the focus of the work is the solid model, no alterations were made to produce a fluid model with a more

representative CSA. However, as is shown in chapters 12 and 13, this fluid model could still be used to pro-

vide insight into the differences between various conditions under which respiration takes place, and a tool

to validate assumed loading conditions for the solid model.
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This chapter reflects some initial studies that were performed to demonstrate the functioning of numerous

aspects of the developed model. A study of the motion of the passive tongue under the influence of gravita-

tional and hypothetical airway forces was conducted in order to understand the influence of the displacement

field on the underlying musculature of the tongue.

9.1 Pre-strain and prestress condition

The initial configuration is defined to be one which, when under the influence of gravity with the loading

corresponding to a person standing in the upright position, results in the configuration defined by the ref-

erence configuration. Since the cadaver was orientated in an upright position when the images were taken,

a known and simply described loading force acted on the body during imaging. It is hypothesised that the

application of a body force could undo the deformation such that, when gravitational forces are reapplied,

the configuration extracted from the imaging data is reattained.

As a first approximation to the zero strain configuration, a spatially constant body force with a magnitude

proportional to that of gravity was applied in a direction opposite to the natural gravitational direction. The

magnitude of the body force was chosen to be 1.2 times that of gravity and applied at an angle of 5˝ in the

direction posterior to the axis aligned superiorly, thereby adding a component of the applied force in the

supine direction.

Figures 9.1 to 9.4 are provided facilitate the description of the process of capturing the zero strain configura-

tion. At time t “ 0, the initial and reference configurations coincide. The pre-strain body force is then applied

to deform the body to the configuration chosen to be the initial configuration. As shown in figure 9.1, this

deformation results in a non-trivial stress and strain state. The inverse of deformation gradient F RI and fibre

stretch λRI are then computed and recorded at each calculation point. The new zero strain state, following

from equations 3.25 and 3.27, appears as in figure 9.2 together with the non-zero displacement. Ideally, ap-

plication of the gravitational body force in the upright orientation (that assumed to be applied to the cadaver

during cryogenic freezing) will result in the state depicted in figure 9.3. Here the displacement field is zero

and the body and fibre strains are non-negligible.

In practise, the resulting equilibrium position does not coincide with the reference configuration. However,

as figure 9.4a demonstrates, the difference between the two is minimal. The majority of the body remains
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(a) Displacement (b) Cell average maximum princi-

pal strain

(c) Fibre stretch (λf)

Figure 9.1: Zero strain configuration (pre-snapshot). Point-wise maximum principal strains of up to 0.45

were computed within the tongue in the vicinity of the mandible.

(a) Displacement (b) Cell average maximum princi-

pal strain

(c) Fibre stretch (λf)

Figure 9.2: Zero strain configuration (post-snapshot).

(a) Displacement (b) Cell average maximum princi-

pal strain

(c) Fibre stretch (λf)

Figure 9.3: Zero displacement configuration (post-snapshot). Point-wise maximum principal strains of up to

0.34 were computed within the tongue in the vicinity of the mandible.

0.2 ´ 0.4mm away from the reference position while the maximum displacement error is approximately

0.6mm in the region of insertion of the SG. The small final displacement is present primarily as a result of the

non-linearity of the material behaviour. Although not ideal, this is a sufficiently accurate approximation for

the zero strain configuration for the purpose of this work. The large strains and muscle stretches respectively
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illustrated in figure 9.4b and figure 9.4c demonstrate the importance of incorporating pre-loading into bio-

logical models of the HUA, as the material stiffness in this regime is significantly greater than in a zero strain

state. It is observed that specific regions of the body, specifically near the attachment points of the tongue to

both the mandible and hyoid bone, experience significant strain. Further, the strain field throughout muscle

groups is non-uniform, with some regions of muscles being placed in tension and others experiencing com-

pressive strain. It is noted that the strain field remained qualitatively similar to the ideal result, but is reduced

in magnitude. This can be attributed to the sensitivity of the computational domain near the fixed mandible

to displacement and the method used to post-process the result. Under more complex circumstances, there

is a need to solve for the zero strain configuration iteratively [84].

(a) Displacement (b) Cell average maximum princi-

pal strain

(c) Fibre stretch (λf)

Figure 9.4: Application of upright gravitational body force from zero strain configuration. Point-wise max-

imum principal strains of up to 0.26 were computed within the tongue in the vicinity of the

mandible. Vertically-aligned muscle fibres in the region of the mandible are seen to experience

non-trivial shortening.

9.2 Mesh dependence study

A basic mesh-dependence study was performed to determine the appropriate element density required for

the production of satisfactory model results. As low-order elements are utilised, either a large number of ele-

ments or strategic distribution of elements are required to ensure that displacement convergence is attained.

Furthermore, the mesh distribution within muscular parts determines the degree of accuracy to which the

underlying musculature is resolved. Three variations of the same model, depicted in figure 9.5, were devel-

oped based on the same underlying discretisation structure (ICEMCFD c⃝ blocking strategy) and evaluated

in two independent tests to determine their relative performance. Since the focus of this study is on the

movement of the tongue, the majority of the elements are located within this body and are concentrated in

expected regions of large strains. The element counts in each part of the anatomy is documented in table 9.1.

In each analysis, the results of the model with the highest element count were used as a basis from which to

measure the performance of the other models.

Table 9.2 summarises the comparison between models under gravitational and pressure loading. In this case,

the muscles remain in a purely passive state. It is observed in both scenarios that the performance of the coarse

grid is similar to that of the most refined grid, with displacement errors of under 7% (corresponding to an

accuracy of less than 1mm) attained at the measurement points. The recorded VWA fibre stretch for the GGp
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(a) Coarse grid (b) Medium grid (c) Fine grid

Figure 9.5: Illustration of levels of mesh refinement used in the grid dependence study. Due to the use of a

structured grid, a complex blocking strategy had to be used to ensure that an even distribution of

elements of similar size was obtained.

Table 9.1: Element count per part for refined meshes. In each model, the number of elements in the tongue

were increased roughly by a factor of two.

Mesh density Mandible Hyoid Tongue Adipose Epiglottis Total Ratio (total)

Coarse 128 156 4526 2332 522 7664 1

Medium 220 288 9078 4188 774 14548 1.90

Fine 360 360 18196 6620 1200 26736 3.49

Table 9.2: Relative error of total displacement for passive tongue under gravitational and pressure load. The

points of measurement are given in figure 8.11b, with PA corresponding to the least constrained

region of the tongue and PC a point of significance in evaluating the position of the tongue for

models of OSA. The error measure was calculated as E “
ˇ̌
P i ´ P FINE

i

ˇ̌Mˇ̌
P FINE

i

ˇ̌
and ¯̄λf given by

equation 7.26.

Mesh density
Relative Gravity Gravity and pressure

CPU time PA PC GGp ¯̄λf PA PC GGp ¯̄λf

Coarse 0.21 -6.77% -5.35% 0.10% -6.55% -5.21% 0.10%

Medium 0.45 -3.90% -2.96% 0.06% -3.80% -2.93% 0.06%

is very consistent for each case, indicating that the strain field and fibre distribution are adequately matched

in all cases.

In the second part of the study, contraction of a specified muscle was performed after gravitational loading

in the upright orientation. In the first test, the GG (all three muscle subgroups) was activated and the second

test involved activation of the SL. Table 9.3 shows that the coarse grid again performs well, providing sub

millimetre precision for the recorded points. It should be noted that, in the case of SL activation, PC under-

goes very small displacements which results in a large relative error when compared to the other cases. The

VWA fibre strain for the posterior portion of the GG is again very consistent between tests.

Due to the reasonably low displacement error margin between the coarse and benchmark model, and that

result trends rather than absolute measures are of interest, the coarsest model was considered satisfactory for
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Table 9.3: Grid refinement and the relative displacement error for the active tongue. Contraction of GG and

SL occur from the upright configuration.

Mesh density
Gravity and GG activation Gravity and SL activation

Rel. CPU time PA PC GGp ¯̄λf Rel. CPU time PA PC GGp ¯̄λf

Coarse 0.22 5.23% 7.32% 0.02% 0.21 -7.79% 82.18% 0.28%

Medium 0.46 1.57% 2.55% 0.05% 0.44 -6.40% 19.97% 0.01%

use. The major benefit of this model was the computational time saved by using a model with less elements.

9.3 Resistance of the passive tongue to motion due to gravitational and

pressure forces

An investigation was performed to determine the effect of the orientation of gravity as well as pressure

loading on the passive tongue. Although the end result of the gravitational loading is intuitive, the role

of the tongue histology in affecting the motion is undetermined. From this study, preliminary insight into

the dynamics of the gross and histological anatomy in circumstances that cause maximum deflection of the

tongue body was attained. Furthermore, analysis of the bulk stretch of each muscle group under various

scenarios provide clarification as to which muscles may be most active to reduce the displacement due to

loading. The loading parameters for the fully quasi-static problem under the conditions of oral inspiration

are collectively presented in section 8.6.3.1.

9.3.1 Oral inhalation

The final displaced configuration of the tongue experiencing ´500Pa pressure loading under different grav-

itational loading conditions is shown in figure 9.6. With no applied load, the tongue remains in a neutral

position when gravity is orientated in the upright direction; while the supine orientation causes the tongue

to move in a posterior direction. In both cases, the influence of pressure ensures that the tongue is drawn

backwards towards the posterior region of the oral cavity. As it moves backward, the top of the tongue lifts.

It is noted that in all cases, due to both prestressing and loading, the spatial variation of local fibre stretch is

substantial with some regions of the GG in compression and others in tension. The fibres in the vicinity of

the mandible, the GG origin, experience large stretches as tissue near the fixed mandible deforms greatly.

In figure 9.7, a quantification of the displacement of the tip and rear of the tongue due to the individual load-

ing components is presented. Regardless of the problem non-linearities (material, geometric and loading),

the displacement of the measured points scaled linearly with the applied loads. A steadily reclining orienta-

tion to the supine results in the displacement of the tongue tip and rear posteriorly, with a steady increase in

the displacement magnitude. Reducing the airway pressure has a similar effect on the tongue displacement.

At the maximum applied load of ´1000Pa, the rear of the tongue moves posteriorly by 11mm, exceeding

that observed in the upright orientation by 7mm. Lying in a prone position has the effect of drawing the

tongue out of the oral cavity. Upon application of airway pressure in this orientation, at maximal load the

pressure force only marginally overcomes the gravitational force to shift the tongue slightly back. At maxi-
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(a) Upright orientation (b) Supine orientation

Figure 9.6: Passive tongue under the influence of gravity and pressure loading (oral breathing). The nom-

inal value for the pressure load is pnom “ 500Pa. The figures present information for both the

displacement and GG fibre stretch.
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(b) Point PA at the anterior of the tongue

Figure 9.7: Anterior displacement of the passive tongue due to gravitational and pressure loading (oral

breathing). The nominal pressure applied at t “ 1s is pnom “ 1000Pa.

mal reclination, approximately half of the displacement of both points of measurement could be attributed to

the gravitational forces. The lift experienced at the tip and rear of the tongue was 5.3mm and 4.7mm respec-

tively. At maximal pressure with the same gravitational orientation, the these values were augmented by a

further 5.3mm and 4.6mm respectively. Furthermore, subject to a gravitational load representing a lateral

orientation, it was observed that the displacement history of the measured points in the posterior direction

was very similar to that of the upright orientation.

In figure 9.8, the measure of overall muscle stretch (equation 7.26) is shown following increasing gravitational

and pressure load. It is interesting to note that, independent of all the non-linearities present, there appears to

be a linear dependence of measured average fibre-stretch for each muscle group on the load for the described

cases.
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Figure 9.8: VWA fibre stretch ratio
¯̄λf
¯̄λ0f

for muscles in the tongue under the influence of gravitational and

pressure forces (oral breathing). The value ¯̄λ0f is the fibre stretch measured in the pre-strained

reference (zero-displacement) configuration. At t “ 0s, the body is in the initial (pre-strained)

configuration. As this value is calculated with the exactly prescribed zero-displacement, there

exists a small computational error between this value and the upright configuration which is

assumed to, but doesn’t quite, match the zero-displacement configuration.

From these figures it is apparent that both the gravitational orientation and pressure load have a significant

influence on the stretch of the various muscle groups. In the upright position, gravitational loading reverses

the stretch due to preloading and they attain a neutral strain state. For the most part in the supine case,

muscles in tension under the influence of gravity remain thus when the pressure load is increased. In par-

ticular, the components of the GG are generally in compression in the upright stance, while in the supine

configuration they are in tension. In both cases, application of a pressure load results in a significant increase

in average stretch of the GG muscles, while the effect on other muscle groups is of a lesser magnitude. In

the prone state, the GGm and GGp become compressed, but a large pressure load places them in a state of

tension. For this loading configuration, a reversal of stain state is observed in the majority of muscle groups.

By comparison to the other muscle groups, the effect of gravitational and pressure loading on the GGm and
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9 ‚ MOVEMENT OF THE PASSIVE TONGUE

GGp is the most significant as these muscles are often the most tensile-strained constituent muscles of the

tongue.

Focusing on the posterior and middle components of the GG, figure 9.9 illustrates the relationship between

the angle of recline, magnitude of pressure loading and the stretch-state of these muscles. Excluding the

prone state, changing the angle of incline alters the degree of tension in which both of the muscles are placed

after gravity loading. There is a linear relationship between the magnitude of the gravitational load and the

muscle stretch. A similar relationship exists between the magnitude of the pressure load and the fibre strain;

the gradient
∆¯̄λf

∆p
remains nearly constant across all gravitational orientations and through the pressure load-

ing step.
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Figure 9.9: VWA fibre stretch ratio
¯̄λf
¯̄λ0f

for two of the component muscle of the passive GG under the influence

of varying gravitational and pressure forces (oral breathing).

9.3.2 Nasal inhalation

In stark contrast to the results presented for oral breathing, the following results for the state of nasal in-

halation demonstrate that the dominant load is that due to gravity. Figure 9.10 depicts the displacement of

the tongue tip and rear in the anteroposterior direction. It shows that after gravitational loading, the spa-

tially constant pressure load produces little further movement in the tongue, even at large negative airway

pressures. Although the surface area at the rear of the tongue is larger than at the front, a marginal ante-

rior deflection due to pressure loading is noted. This can be attributed to the lifting of the tongue due to

the out-of-balance pressure load acting on the superior surface of the tongue. The result of the nearly bal-

anced anteroposterior loading is that the maximum pressure induced anterior displacement, measured at

the tongue tip for the supine case, is only 0.7mm. The rear of the tongue experiences an anterior motion of

0.25mm, but lifts by 1.75mm.

Although the overall posterior deflection of the tongue remains minor through the pressure loading steps,

the values measured for fibre stretch changes significantly. Compression of the MH further indicates that
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Figure 9.10: Anterior displacement of the passive tongue due to gravitational and pressure loading (nasal

breathing). The nominal pressure value was pnom “ 1000Pa.
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Figure 9.11: VWA fibre stretch ratio
¯̄λf
¯̄λ0f

for muscles in the passive tongue under the influence of gravitational

and pressure forces (nasal breathing).

the tongue is being raised in the oral cavity due to the airway pressure. Notably, the values obtained for the

larger components of the GG muscles remain constant through pressure loading.

9.4 Summary and discussion of results

The results presented here indicate that the gravitational loading, the magnitude of the pressure load and the

method of inhalation have a significant effect on the deformation of the passive tongue. Not only does the

tongue tend to displace posteriorly under increased loading and reclination, thereby reducing the volume

of the retroglossal space, but it tends to lift, threatening to block the oral cavity. Furthermore, it has been

demonstrated that the measure of average fibre stretch ¯̄λf can be a good indicator for the overall tensile or
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9 ‚ MOVEMENT OF THE PASSIVE TONGUE

compressive state of the muscle. The average strain state experienced by each muscle differs considerably

with the loading conditions applied to the tongue. A visual demonstration of the strain state of the GG given

in figure 9.6, coupled with the presented measures extracted during various loading conditions give credence

to the idea of using this as a filter (equation 7.24) for the GA search space.
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10. TONGUE RESPONSE TO PRESCRIBED

MUSCLE ACTIVATION

Up to this point, the model has remained entirely passive, with no muscle contraction performed to produce

motion. This section documents the deformation caused by contraction in specific muscles in two distinct

scenarios. Firstly, a demonstration and analysis of the effect of contracting individual muscle groups in iso-

lation will be presented. Next follows a discussion of the efficacy of the components of the GG in preventing

posterior motion of the tongue. Note that in the following scenarios, the muscle activation constant α was

prescribed and the conditions remained completely quasi-static. Furthermore, unless stated, the gravitational

orientation is set in the upright position.

10.1 Deflection due to individual muscle activation

The role of the muscles of the HUA is well understood and is extensively documented in medical literature.

This section documents the observations made when invoking deformation through the control of individ-

ual muscle groups in the tongue. These observations provide a validation that the spatial description of the

muscle groups and the associated contractile model produce a functional tongue model that exhibits phys-

iologically realistic behaviour. Additionally, investigating the response of an individual muscle undergoing

contraction provides insight into the role each muscle plays during complex operations when multiple mus-

cles act simultaneously. A complete visual showcase of the response of the upper airway tissues during

contraction of each muscle is presented in appendix F. These results may be compared to the descriptions of

their actions given in the medical literature and documented in section 2.2.

Contraction of the GG, constituted of three distinct and separately controlled fibre groups, causes the tongue

to be drawn towards the mandible where it has its origin. In each three subsets, lateral extension of the

tongue due to its compression in the sagittal plane was observed. However, due to the relative symmetry

of the geometry and the line of action of the muscles, minimal axial twisting is observed during muscle

contraction. The GGp primarily draws the posterior portion of tongue anteriorly. As a result, the hyoid and

epiglottis are displaced forward as well and the anterior region of the tongue is moved forward and inferiorly.

The posterior region of the tongue surface is elevated due to the incompressibility of the tissue.

It was observed that the FEM mesh just superior to the mandible undergoes extreme and unrealistic de-

formation in contraction of this muscle. This computational artifact is the result of two factors. Firstly, the
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10 ‚ TONGUE RESPONSE TO PRESCRIBED MUSCLE ACTIVATION

(a) GGp (FFMR 5%) (b) GGm (FFMR 5%)

Figure 10.1: Isolated muscle activation of components of the GG. The reference position of the tissues is indi-

cated by the dashed silhouette.

orientation of the GGp fibres in this region is such that, under contraction, the tissue deforms freely in this

location with no point of fixture. Secondly, the constraint of the stiff mandible allows little flexibility here. To

minimise this effect, further mesh refinement in this vicinity or the use of a higher-order FE approximation

should be considered. As with the GGp, the GGm also draws the posterior tongue forward. However, the

mechanics of motion differs in that the the posterior portion of the superior surface of the tongue nearest the

uvula is moved inferiorly towards the point of fixation. The rear of the tongue is drawn forward with its

upper surface. Consequently, the tongue tip undergoes a large deflection anteriorly. A comparison of fig-

ure 10.1a to figure 10.1b suggests that the GGp is more effective than the GGm at moving the rear surface of

the tongue anteriorly. The anterior region of the tongue’s superior surface moves inferiorly upon activation

of the GGa. The deformation is localised, and the rear section of tongue remains largely unaffected in terms

of spatial orientation. The tongue tip displaces also inferiorly and exhibits little movement in the coronal

plane. A similar lack of transverse deformation occurs upon contraction of the other constituent muscles of

the GG.

Activation of the SL results in the tongue tip curling backwards and upwards towards the soft palate as

shown in figure 10.2a. Considerable lateral deformation, due to incompressibility effects, are also observed.

The location of the epiglottal fat pad has a significant role in facilitating the functionality of this muscle which

runs from the tip to the root of superficial regions of the tongue. Due to its location and orientation, the SL

utilises the epiglottal fat pad to provide elastic resistance during contraction. Due to its incompressibility

and the proximity of the thyroid cartilage to the tongue-fat-pad interface, the adipose tissue undergoes little

deformation on SL contraction and the efficiency of the muscle contraction thus is maximised. High contrac-

tion strengths produce deformation magnitudes that may result in contact between the tongue and the hard

palate.

The two IL muscles move the tip of the tongue inferiorly and in a posterior direction. Figure 10.2b demon-

strates that they retract the tongue tip and increases the curvature of the tongue’s superior surface. The lower

parts of the bulk of the soft tissue also undergo little deformation. Collectively, the SL and IL appear to con-

trol the vertical motion of the tip of the tongue. Their contraction is also able to move the tip posteriorly, but

cannot directly cause the tip to move anteriorly.
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10.1 ‚ DEFLECTION DUE TO INDIVIDUAL MUSCLE ACTIVATION

(a) SL (FFMR 5%) (b) IL (FFMR 5%)

Figure 10.2: Isolated muscle activation of primary muscles for use in controlling the vertical position of the

tongue tip.

As the VT contracts, the upper surface of the blade of the tongue flattens and displaces laterally. Furthermore,

the superior and posterior surfaces move inferiorly and anteriorly respectively as the alignment of the fibres

pulls these surfaces in towards the bulk of the tongue tissue. A measurable deflection of the epiglottis is also

evident.

The TV, which has fibres aligned in the transverse plane, serves to contract the tongue blade laterally, thereby

causing the tip to deflect anteriorly. Tissue incompressibility dictates that the superior surface bulges towards

the palate and the posterior surface towards the retropharynx. As this muscle is located only near the surface

of the tongue, the main body of the tongue near the mandible remains in a low-stress state. As shown in

figure 10.3a, as a result of the shortening of the tongue surface, the blade tends to curl downwards towards

the mandible. However, it has less influence on this motion than the VT.

(a) TV (FFMR 5%), transverse view (b) MH (FFMR 5%), coronal view

Figure 10.3: Isolated muscle activation of muscles with action in the coronal and axial planes.

Shortening of the MH, which is located at the root of the tongue body, has action in the coronal plane and lifts
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the tongue towards the palate. Figure 10.3b demonstrates that the highly curved muscle which originates at

the mandible flattens out as it is pulled taut, leading to a pronounced vertical displacement of the hyoid bone.

The epiglottis is moved posteriorly as the lower regions of the epiglottal fat-pad move anteriorly.

Upon activation of the HG, the rear of the tongue is drawn towards the hyoid, its point of origin. This results

in the tongue blade rocking backwards and the tip displacing superiorly. The lateral edges of the upper

surface move inferiorly and towards the midplane, while the tissue on the sagittal plane is displaced in the

opposite direction. The action of this muscle appears to oppose that of the MH.

The SG, which is modelled as having a portion both internal and external to the tongue body, is shown to

displace the tongue posteriorly and superiorly. Figure 10.4 demonstrates that the external muscle model

successfully reproduces the action of the muscle external to the tongue body. The portion that is inserted

into the tongue is aligned with the IL which, upon contraction, causes the tongue tip to retract and displace

inferiorly. Due to the the muscle origin being more distant from the sagittal plane than the insertion, some

lateral deflection is observed. However, this may be due to the assumption of a linear line-of-action in the

portion of the muscle external to the bulk as opposed to the nonlinear complex geometry of the physical

muscle.

Figure 10.4: Isolated muscle activation of the internal and external components that comprise the SG (FFMR

25%). Due to the small CSA of the applied traction region on the posterior tongue surface, con-

siderable muscle activation was required to attain a significant deformation.

Two other muscles in the tongue were modelled similarly. The DG, which constitutes a portion of the floor

of the mouth, raises it upon shortening and draws the hyoid towards the anterior region of the mandible.

The SH, which terminates at the hyoid, uses the mandible as a pivot to lift the rear of the tongue. As a

consequence, the tongue tip is moved inferiorly.

The GH also influences the position of the hyoid. Its activation results in the hyoid bone being pulled ante-

riorly towards mandible, causing the epiglottis to move forward. The root of the tongue bulges due to the

shortening of the muscle and the incompressibility of the tissue. The adipose tissue in which the epiglottis

is embedded is attached to the hyoid and moves by the contraction of the GH. Significant movement of the

lower-rear region of the tongue is also observed. As the GH is only present in the lower extremities of the

tongue, the bulk of the tongue is unaffected by its contraction.
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10.2 ‚ SIMULTANEOUS CONTRACTION OF SEVERAL MUSCLE GROUPS

An additional observation that can be made is that contraction of almost all muscle groups significantly

affects the position of the tip of the tongue; and, for this reason, controlling the motion of this anatomical

point would be challenging. When in (an unstable) equilibrium, a perturbation in the contraction strength of

any of numerous muscle groups could easily result in a considerable deflection of the tongue tip.

Observations suggest that, although the global average behaviour of the contracting muscle was to shorten,

the dynamics of each representative fibre element differed considerably according to their location in the

tongue. It has been noted that, on occasion, an element of the contracting muscle was computed to actually

undergo extension. An example of this can be seen in the root of the GG in figures 10.1a and 10.1b. This

contradictory result can be attributed to numerical error associated with using a coarse grid and a low-order

FE with the enforcement of the incompressibility constraint. There is an inability of the mesh to deform in

such a way as to correctly capture the dynamics of the muscle in these locations.

10.2 Simultaneous contraction of several muscle groups

Some of movements of the tongue are not possible without the simultaneous contraction of multiple muscles.

A careful balance of the contractile force generated by each muscle is required in order to achieve a desired

movement. To this end, several further experiments involving the simultaneous contraction of multiple

muscle groups were performed in order to better understand the role of various muscles in the movement

of the HUA soft tissues. These tests also served to evaluate further the stability of the numerical algorithms

as the material non-linearities become increasingly complex. The interactions between the fibres become

more pronounced and competition developed for extension between adjacent overlapping active muscular

structures. With no rate-dependence, superlinear convergence rates were continually attained for these more

complex scenarios.

Shortening of all three components of the GG causes the tongue to be deformed in the direction of the lower

mandible, with the deformation in the transverse plane especially noticeable in the anterior region of the

blade as well as at the root of the tongue. The deformation appears consistent with that of their individual

contributions previously presented. As the force is distributed evenly throughout the bulk, in a sagittal

section the tongue appears to retain its natural curvature. As shown previously, a relatively low FFMR is

required to produce a large deflection of the tongue. Observed in figure 10.5 is that, due to their combined

activation, the contractile effort required by the active components to produce a deflection of the order of that

depicted in figure 10.1 is halved1.

The act of protruding the tongue from the mouth is a complex task as there is no single muscle group that has

a line of action in this direction. It is evident that the both the VT and TV result in partial anterior movements

of the blade, with the former primarily compressing the blade ventrally along the superior surface and the

latter shortening the blade laterally. Their combined contraction, due to the incompressibility of the matrix

tissue, results in the anterior extension of the blade. However, due to the blade curvature, inferior motion

occurs. To counter this, contraction of the SL pulls the tip level, but also results in slight opposition to the

anterior movement. Figure 10.6 demonstrates an example of precise specification of the magnitude of the

contractile force and that the resulting motion can be such that the tongue tip remains near level in order to

prevent contact with the lower teeth.

1 This demonstrates that the synergistic action of both large and small muscle groups may result in more efficient movements being

produced. However, time-dependent studies must be performed to validate this claim.
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(a) Midsagittal view (b) Transverse view

Figure 10.5: Simultaneous muscle activation of all components of the GG, namely the GGa, GGm and GGp

(FFMR are all 2.5%).

(a) Midsagittal view (b) Transverse view

Figure 10.6: Simultaneous muscle activation of the SL, TV and VT (FFMR are 7.5%, 7.5% and 5% respec-

tively).

(a) Midsagittal view (b) Coronal view

Figure 10.7: Simultaneous muscle activation of the MH and SG (FFMR are 5% and 12.5% respectively).
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10.3 ‚ QUANTIFICATION OF ISOLATION OF MUSCLE ACTION DURING CONTRACTION

Although the SG pulls the tongue towards the soft palate, its angle of insertion into the tongue is such that, as

depicted in figure 10.4, it is unable to produce sufficient upwards force to lift the tongue. Shown in figure 10.7

is that the MH, located on the oral floor, is of assistance as the FFMR prescribed to the SG is halved to

produce a similar amount of posterior displacement while producing a greater component of vertical motion.

This is important in performing articulation and swallowing when the oral cavity must be sealed from the

nasopharynx.

10.3 Quantification of isolation of muscle action during contraction

The histology and dynamics of the tongue is such that the contraction of an individual muscle group will

alter the length of the other muscles. For a two-dimensional model, Sanguineti et al. [245] determined that

contraction of muscle groups result in independent motions of the tongue. For a three-dimensional model

however it is observed that, depending on the orientation and location of the other muscles with respect to

the activated muscle, the contraction may result in regions of the surrounding muscles to be placed in tension

or compression. In some cases, a muscle appears to contract in isolation of all other groups, resulting in a

negligible change in length to the other muscles. This interaction is important from a control perspective,

as the complex interaction of the muscles determines which are most effective at producing a prescribed

motion. Analysis of this interaction also indicates which groups are antagonists of one another and thus

highlight those that might be used to reverse the action of an other.

In order to demonstrate the (degree of) isolation of each muscle group, further analysis of data presented in

section 10.1 was performed. The volume-average fibre stretch of each group was recorded after gravitational

loading and monitored during the contraction phase. After the prescribed contraction, were a passive muscle

to have undergone a stretch change of ˘ 5% then the contraction of the specified muscle was deemed to have

a significant effect on the overall length of the passive muscle.

Fibre stretch data is tabulated in table 10.1, from which the extent to which the contraction of a muscle group

remains isolated can be inferred. For example, it is clear that contraction of the DG, GH, MH, SG and SH

have little effect on the surrounding muscle groups, while the constituent muscles of the GG, SL, TV and VT

have a great influence over the lengths of 4 or more other muscle groups. The two main reasons for these

contrasting results are the resulting deformation of the tongue and the orientation and location of the passive

muscle with respect to the active one.

The diagonal values in table 10.1 indicate that the average compressive strain for the active muscle at the

specified contraction strength is between 10% and 25%. Due to the compliance of the matrix, not much con-

tractile force is needed to produce large deformation in these muscles. The colouring of the heat map depicts

a certain symmetry across the diagonal. For some pairs of muscles, contraction of one results in shortening

of the other; an example of such a pair being the GGm and VT. Muscle pairs that act antagonistically are

noticeable when contraction of the one causes tension to appear in the other, and vice versa. This occurs in

cases such as for the TV and VT or the TV and SL which may produce in excess of 10% average tensile strain

in one another.

It should be noted that the values presented here provide a representative value of stretch for the entire

muscle and do not reflect the extent to which the deformation is localised to a region of the muscle. The

antagonistic effect of these muscles may be local in nature as the degree to which the muscle groups overlap
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Table 10.1: Heat map of fibre stretch ratio
¯̄λf
¯̄λ0f

resulting from the contraction of individual muscles at 5%

FFMR. The relative shortening of the active muscle is indicated on the diagonal. Muscles placed

in tension are highlighted in red, while blue highlights indicate that the muscle is in a compressive

state.

Affected

muscles

Active muscle

DG GGa GGm GGp GH HG IL MH SG SH SL TV VT

DG 0.88 1.002 1.003 1.007 0.994 1.006 1.003 1.006 1.003 1.01 1.006 0.998 0.99

GGa 0.99 0.766 0.85 0.972 0.998 1.003 1.055 0.992 0.984 0.98 1.1 1.025 0.842

GGm 0.996 0.904 0.774 0.899 0.995 1.032 1.069 1.008 1.022 0.986 1.05 1.057 0.855

GGp 0.998 0.979 0.948 0.761 0.97 1.046 0.975 1.032 1.002 0.993 1.009 1.035 0.914

GH 0.992 1.003 1 0.966 0.847 0.995 1 1.034 1 1.005 1.021 0.993 0.979

HG 1.005 1.006 1.038 1.074 0.997 0.763 1.03 0.995 1.007 1.001 0.979 1.044 1.055

IL 1.002 1.032 1.063 1.005 1 1.023 0.746 1.013 0.974 1 0.96 1.036 1.065

MH 1.004 0.995 1.006 1.036 1.011 0.987 1.01 0.81 0.989 0.987 1.016 0.993 0.984

SG 0.989 0.995 1.021 1.019 1 1.022 0.973 0.99 0.86 0.99 1.027 1.018 0.996

SH 0.942 0.996 1.013 0.995 1.018 1.015 0.998 0.983 0.985 0.902 1.018 0.99 1.009

SL 1.012 1.041 1.049 1.037 1.014 0.987 0.976 1.02 1.01 1.007 0.805 1.101 1.087

TV 0.998 1.017 1.036 1.04 1.001 1.031 1.022 1.002 1.01 0.999 1.064 0.765 1.125

VT 0.99 0.951 0.931 0.929 0.987 1.012 1.022 0.989 0.989 0.996 1.058 1.106 0.758

may be relatively small. For example, the VT and GG muscles are aligned and overlap in the superficial

regions of the the tongue. The result of this alignment is that contraction of the VT induces a shortening of

the GGa, GGm and GGp, but the VT would not play a significant role in shortening of the GG at the root of the

tongue. This phenomenon, contrasted against the relatively isolated contraction of the GH, is demonstrated

in figure 10.8. Additionally, since the SL and TV are locally orthogonal to the VT, the incompressibility of the

tissue results in stretching of these two muscles. Shortening of the GH affects the length of the floor of the

(a) VT (FFMR 5%) (b) GH (FFMR 5%)

Figure 10.8: Isolated muscle activation and its effect on the fibre stretch in the GG.

tongue complex, while the rest of the tongue remains largely undisplaced. Although the inferior portion of

the GGp is adjacent to- and aligned with- the GH, according to its representative average it is shortened only

marginally during contraction of the GH. It is also interesting to note that, due its low internal volume fibre
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10.3 ‚ QUANTIFICATION OF ISOLATION OF MUSCLE ACTION DURING CONTRACTION

fraction, the SG does not cause a significant shortening of the IL with which it is aligned in the tongue bulk.

Given that the performance of each region of muscle is deformation- and rate- dependent, the interaction

between the muscles has great consequences on the local dynamics of muscle contraction. From the data

presented in table 10.1, it can be said that this interaction should not be ignored when determining the ideal

set of active muscles for the purpose of developing a position-control algorithm for the tongue.

Further investigation of the relationship between the prescribed FFMR and the average fibre stretch revealed

that, although the prescribed FFMR increased linearly in pseudo-time, the induced change in muscle length

evolves in a nonlinear but asymptotic manner. It is observed that the stiffening effect of the tissue due to

both the matrix and the extended fibre PEs resulted in a reduction in a rate of muscle length change. This

phenomenon is illustrated for the GG in figure 10.9. Although not demonstrated, this relationship must be

dependent on the orientation, loading and deformation preceding the muscle contraction.
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Figure 10.9: VWA fibre stretch ratios of muscles during contraction of the GG components when in the up-

right orientation.

Figure 9.11 has suggested that the GG extends under gravitational and pressure loading and may therefore

be required to contract to reduce deformation. Should the GGm and GGp be the primary muscles predicted

for use as airway dilators, the data presented in figure 10.9 and table 10.1 suggests that some activation of

the HG, IL, SL and TV may be necessary to prevent their extension due to the action of the GG. However,

it has been demonstrated that the local effects of muscle contraction as well as external loading are complex

and on occasion difficult to predict. Conceivably contraction of these muscles could induce further length

changes in other muscle groups and therefore require an even more complex activation pattern to oppose the

deformation.

The concepts presented here and in section 9.3 form the basis of and motivation for the muscle control al-

gorithm presented in section 7.3.1. A full assessment of the performance of the algorithm is presented in

chapter 11.
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10 ‚ TONGUE RESPONSE TO PRESCRIBED MUSCLE ACTIVATION

10.4 GG activation under loading

Since the GG is the main muscle of the tongue affecting airway patency, it is expected to have a significant

level of activity during breathing. As demonstrated in section 10.1, two components of the GG appear ef-

fective in opposing posterior deflection of the tongue. However, the strength of muscle contraction required

to prevent posterior movement of the tongue into the retroglossal space under full gravitational and pres-

sure loading remains unknown. Assuming quasi-static conditions, this figure was quantified using a basic,

manually controlled model representing the maintenance of airway patency under load. In each case, oral

inhalation was simulated.

The data shown in figure 10.10 describes the level of muscle activity of the component muscle of the GG

required to move point PC to a position of zero displacement in the anteroposterior direction under various

gravitational and pressure loading conditions. Since the exact position is never attained, the increases in

activation level were kept small enough to prevent significant positional overshoot. The data between the

steps when PC was behind and in front of its reference position was interpolated to extract the estimated

FFMR for zero displacement. The angle cosine gives the component of the gravitational force in the posterior

direction. Please note that no other muscles were active in this study, and thus the overall shape and posture

of the tongue after the desired goal position was attained was not considered.

The results indicate that the GGp is more effective reducing protrusion of the tongue into the retroglossal

space than the GGm. It is observed that the FFMR required for the GGp to maintain the tongue’s forward

position is up to 60% less than GGm for the same loading conditions. This is because the GGp has a direc-

tionality and location that is better suited to drawing the rear of the tongue forward than the GGm, as can be

noted when comparing figure 10.1a to figure 10.1b.
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Figure 10.10: Quasi-static GG contraction under gravitational and pressure loading. The recorded values

indicate the FFMR magnitude required to reduce the anteroposterior deflection of PC to zero

for a given nominal pressure. The angle cosine takes values of 0 and 1 when simulating the

upright and supine orientations respectively.

It was also observed that, under no airway load, an increase in the degree of recline required a corresponding

increase in activation to counter gravity-induced movement of the tongue. Similarly, as the negative pressure
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10.4 ‚ GG ACTIVATION UNDER LOADING

increases at zero inclination, the FFMR required to prevent motion increases. Figure 9.7 indicated that under

most scenarios, excluding the most extreme pressure loading cases, the gravitational loading of the prone

orientation results in anterior deflection of the tongue, thus requiring no contribution from the GG to regulate

this component of motion. For this reason, further evaluation of the prone orientation was not performed.

From the collected data, it is evident that there exists a linear relationship between required FFMR and angle

of incline for a fixed pressure. Replotting the data with the pressure as the dependent variable (not shown)

indicated that there is also a linear relationship between required FFMR and applied pressure for a fixed

inclination angle. These relationships largely coincide with the measured data presented in [111, fig. 4] for

the conscious condition where the relationship between the EMG amplitude and nominal pressure for an

awake subject is approximately linear. A family of curves that fits this data is described by an equation of the

form

FFMR “ c p ` m1 p1 ` m2 pq γ , (10.1)

where p is the negative epiglottal pressure in Pa, c is a constant dictating the FFMR value in the upright orien-

tation, m1 is the nominal gradient, m2 is a gradient pressure correction factor, and γ “ cos θ the angle cosine

with θ being the angle of incline measured from the supine position. Table 10.2 provides the coefficients for

equation 10.1 that fits the data shown infigure 10.10.

Table 10.2: Curve fitting for GG contraction for PC anteroposterior reference position re-acquisitiona

Parameter

Muscle
Coefficient c m1 m2

Scale 10
´5

10
´2

10
´4

GGm 1.68 1.23 2.65

GGp 2.6 2.81 6.71

a Optimal values for the parameters were obtained

using a least-squares fit and solved for using a

nonlinear solver that utilised evolutionary algo-

rithms [318]. For both sets of data, the fitted

curves have a coefficient of determination R2 ą

0.99.

From these results the preliminary conclusion is that the GGp functions as the primary airway dilator com-

ponent of the GG as it provides a more efficient mechanism for reducing the movement of the tongue into

the retroglossus than the GGm. However, as the GGm has a greater influence on the motion of the superior

surface of the tongue over which a non-trivial pressure field exists during breathing, it is anticipated that it

plays a crucial role in position control of tongue during respiration.

The results presented here will be used again to validate the results predicted by the neural model in a later

discussion. In reality, numerous muscles are simultaneously activated to control tongue orientation. It is

assumed that the performance dictated by figure 10.10 represents the least efficient method for attaining

position control as there exists an overlap in functionality of numerous muscles groups and, due to the CE

length dependence, the muscles become less effective when strongly contracted.
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10 ‚ TONGUE RESPONSE TO PRESCRIBED MUSCLE ACTIVATION

10.5 Summary and discussion of results

It has been demonstrated that the muscle model, combined with the geometric representation and internal

and external micro-histological description of the tongue’s constituent muscles, produces realistic deforma-

tions of the tongue. The required activation level to produce large deformations is, in most instances, small

for the chosen muscle parameters. However, it is also noted that most muscle groups readily influence the

tongue tip position, thus making it difficult to attain stability under complex contraction conditions. The ef-

fect of isolated muscle contraction on the strain state of the other muscles has been quantified at a predefined

FFMR, thereby highlighting possible antagonistic muscle groups. From this data, it can be speculated which

muscles might be used in conjunction with the primary dilators to counter airway loads. Furthermore, this

illustrates the purpose of implementation of the muscle stretch-based filter implemented within the neural

model. Finally, a simple analytical model of contraction of the GG components was developed to describe a

plausible, but inefficient, mechanism for counteracting gravitational and airway loading. The required con-

tractile response, which was linear with respect to the orientation angle and nominal pressure, showed that

the GGp was most efficient at controlling the anteroposterior position of the tongue’s rear surface.

Further discussion

As a consequence of the complex geometry of the tongue, numerical difficulties in the global nonlinear solv-

ing algorithm exist and its convergence rate was superlinear. The reason for the loss of quadratic convergence

can be attributed to the complex macroscopic and histological geometries, the interaction of the muscles and

sensitivity of their constitutive equations to perturbations. Wilhelms-Tricarico [311] suggests that higher-

order elements are more suitable for complex biological geometries in order to minimise numerical instabili-

ties.
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11. CHARACTERISTIC RESULTS,

PERFORMANCE ANALYSIS AND

PARAMETRIC STUDY USING NEURAL

MODEL

The neural model, demonstrated to work under geometrically simple scenarios, was incorporated into the

representative model of the tongue. The effectiveness and general response characteristics of the model is first

demonstrated and discussed. Subsequently a comprehensive parametric study was performed to determine

which environmental and material parameters affect the response of the tongue musculature during breath-

ing. The influence of modifying loading, algorithmic and modelling parameters were tested individually and

ultimately used to understand how to best configure the model for later application.

The baseline conditions for the parametric study, from which a single condition or parameter was altered for

each set of simulations, were that:

1. A fully time-dependent model, for which fV
c is considered, was used. A fixed time-step size of 15ms

was chosen such that 500 time-steps were evaluated per simulation.

2. The gravitational orientation was that simulating the supine configuration.

3. The spatial loading description for the airway represents that approximating mouth breathing, as given

by equation 8.11.

4. In the breathing cycle, three successive inhalations (no exhalation) with a period of 2.5s are simulated.

5. The nominal pressure magnitude was set at pnom “ 500Pa.

6. The fibre volume fraction for the tongue musculature was set at φf “ 0.7.

7. For the activation parameters, τR “ τF “ 150ms.

8. The neural model was utilised to renew the active muscle set at every second time-step.
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9. The control points used for the neural model are those shown in figure 8.11 and had a uniform weight

of wp “ 1 for points on the tongue.

10. Work rate minimisation, the secondary objective function, was not incorporated.

The supine orientation was chosen because it produces the greatest displacements when the muscles are

fully passive and was expected to accentuate the role that airway dilator muscles may play. Furthermore,

due to the modelled breathing pattern, the peak epiglottal pressure is described by pmin
epi “ ´pnom. With the

chosen conditions, the minimum epiglottal pressure is in the range of that specified by Van Hirtum et al.

[283, 284], Shome et al. [252] and just exceeds the threshold pressure for the loss of GG reflexive mechanisms

[111].

The three characteristic phases used to perform the simulations were as follows:

1. Prestressing was performed and the average fibre stretches, referenced by the neural model, were

recorded.

2. Full gravity loading was applied using several load-steps.

3. The neural model was utilised while a time-dependent pressure load was applied. Since the muscle

activation required at t “ 0s to attain the zero displacement position under gravitational load was

unknown, zero initial muscle activation was assumed.

The results reported in this chapter illustrate the trends in muscle response under altered simulation con-

ditions. The main focus is on the response of the GG as its role is considered to be most significant in the

prevention of the OSA condition. We expand on the role of the other muscles when an optimised model is

produced. To this end, significant results will be numerically evaluated and quantified for practical use in

chapter 13.

11.1 Position maintenance and muscle activation characteristics

To demonstrate the efficacy of the neural model in controlling the configuration of the upper airway tissues,

the position of several points on the tongue and epiglottis were monitored for both the active and fully

passive models. Figure 11.1, which indicates their displacement from the goal position, allows a comparison

to be made between the two cases, and the performance of the control model to be quantified. As expected,

large displacements, which are consistent with those observed for the time-independent case, were present

in the passive tongue. Its pattern of the movement mimicked the applied load. In this figure, it is clear that

the active model successfully reduced the overall displacement of the control points. At zero-load conditions,

all points are within 1.5mm of their goal position and at maximal load the displacement of these points is

significantly reduced. An advantageous side-effect of the control of the tongue was that the motion of the

epiglottis was decreased considerably.

From this data, a few preliminary observations can be made. Firstly, at each control point the exact goal

position was not achievable. Secondly, a consistent and stable displacement could not be attained but overall

it can be said that position control is maintained as the pressure varied. As the air-induced load increased, it

became more difficult to remain close to the goal configuration. However, this result may be physiologically
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Figure 11.1: Effectiveness of neural control model in reducing and minimising displacement of control points

on the tongue under the influence of gravitational and pressure loading. In the first few millisec-

onds, while the pressure load is minimal the GA aims to reverse the deformation that occurs

under gravity pre-loading. Although the ability for position control in the upright configuration

is demonstrated here, further results depicted in this section refer only to the supine orientation.

realistic, as a displacement of the order of 2mm has been measured by Cheng et al. [38] at the tongue posterior

(approximately corresponding to PC) during regular breathing.

The analysis shown in table 11.1 further highlights the performance of the control model. Not only is the

mean position of the control points closer to their goal, but the amplitude of displacement under load is

significantly reduced. The poor displacement result at the tongue tip may be a consequence of having only

a single control point at the apex. However, in order to further assess the root causes for the difficulties in

position attainment and maintenance, the model behaviour in terms of muscle activation and lengths must

first be presented.

Table 11.1: Relative performance of the neural control model in minimising motion of the tongue. The first

0.25s of data are disregarded as, up to this point, the GA is in the process of actively reversing

deformation due to the full gravitational load and increasing pressure load.

Mean values

Point Passive Active Reduction

mm mm %

PA 9.32 1.86 80.07

PB 7.91 1.32 83.34

PC 6.25 0.65 89.63

PD 3.59 0.86 75.94

PE 1.93 0.25 87.26

Peak-to-peak amplitude

Point Passive Active Reduction

mm mm %

PA 3.06 1.43 53.27

PB 2.90 1.02 64.86

PC 2.61 0.82 68.67

PD 1.76 0.76 57.05

PE 1.18 0.45 62.10

The muscle activation level α, derived from the activation history for each muscle and the current input signal

u is shown in figure 11.2a. A complex sequence of neural firings results in an overall increased activation

level for the majority of muscles as the airway pressure decreases. With the a priori value of T s
0 chosen

such that where possible 0.3 ď αmax ď 0.75 for each muscle group, the muscles have sufficient resources
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to respond to the displacement-causing stimuli1. The associated FFMR, depicted figure 11.2b, demonstrates

that the primary muscles used to oppose the motion are the GGm and GGp, the airway dilators. Their

response is synchronised with pressure load, indicating that they activate as a direct response to the load.

This correlates well with the trends shown in [165, 261, 221]. It was observed that, in the supine orientation,

these components of the GG are required to produce 1.75% of their maximum contractile force to oppose

the 500Pa nominal pressure. This indicates that, for the large GG, not much effort is required to prevent the

tongue from prolapsing into the airway.
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Figure 11.2: Neural control response for each muscle of the tongue. The predicted neural signal u at each

time-step results in an adjustment of the activation level (figure 11.2a) based on the activation

history of the muscle. This value is then translated into the FFMR shown in figure 11.2b us-

ing equation 7.4. Within the first half-period 0 ď t ď 1.25s, the muscle activity increased to a

physiologically representative state to oppose all loading.

At peak pressure, these muscles produce approximately four times greater contractile force than next greatest

contributors, the TV and SL. The role of these secondary contributors are, respectively, to reduce the lateral

and inferior motions induced by GG contraction, as well as lift the tongue apex. The HG also plays a role

in reducing lift at the rear of the tongue. Although their activation appears to be affected by the applied

pressure, due to their low FFMR the role of the the other muscles in terms of overall posture control is min-

imal. Unexpectedly, included in the latter group is the GGa which was predicted to remain largely inactive

throughout the simulation. Overall, these results suggest that collectively the muscles of the tongue are easily

able to oppose the forces generated during oral inspiration.

From table 10.1, it had been predicted that a large active reduction in length of the GGm would result in

significant lengthening of the HG, TV, MH and SL; while shortening of the GGp leads to an increase in the

average stretch of the IL, SL and TV. Further it was hypothesised that contraction of these (antagonistic)

muscles would assist is returning the tongue to its original configuration. It is observed in figure 11.2b that,

with the exception of the MH, these muscles are the next most strongly contracting muscles. However, their

level of activity cannot be inferred from table 10.1.

1 These general guidelines for a suitable range for α were determined by trial-and-error. If the activation level is too low or high,

the response plateaus thereby preventing a rapid response by the muscle group. This response was demonstrated visually in

figure 2.15.
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Due to the discrete nature of the time stepping and the fixture of activation parameters, the predicted FFMR

appears to oscillate around what may be considered the ideal value. Using both a 5-point moving average and

a 14-coefficient B-spline function2, this mean value can be ascertained and visualised. Figure 11.3 illustrates

that both filtering methods indicate similar results. Given the smoothness of the loading condition, it was

decided that the B-spline smoothing technique produced the most probable candidate and thus was utilised

extensively in further evaluations of similar data. Averaging the data over numerous cycles further increases

the accuracy of the mean value approximation.
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Figure 11.3: Smoothing of the resulting FFMR by use of a moving average and B-spline curve. The num-

ber of coefficients used in the spline determines its smoothness and sensitivity to the solution

oscillations.

With respect to the lengths of the muscle after contraction, figure 11.4 demonstrates that using the chosen

measurement technique, all muscles are in an overall contractile state when maintaining posture control.

The GGm and GGp, the two main contributors of the control mechanism that are always tested by the GA

regardless of their length, are in a contractile state. The length of the GGm remains constant while that of the

GGp changes with the applied load. The other muscle groups, of which their length determines their active

candidature status within the GA, remain near their threshold value for active candidacy. It is plausible that

the GA deselects some of these muscles prematurely, forcibly deactivating them for a duration of time thereby

incorrectly reducing their FFMR. However, given the overall magnitude of their contribution presented in

figure 11.2b, the error introduced by this was considered negligible.

Now that the muscle activation and average length data has been shown, a decomposition of the displace-

ment history (figure 11.1) for four of the control points is made in figure 11.5 to provide insight into the

performance deficits of the model. The differences in the lateral motion of the front and rear of the tongue

shown in figure 11.5a indicates that some twisting is present in the coronal plane. The lack of symmetry in

the model and therefore loading, coupled with the assumed symmetry in contractile states of muscles with a

left and right constituents, account for this observation. In figure 11.5b it is shown that the tongue tip retains

a large component of movement in the posterior direction. From figure 11.2b, it was observed that the TV

has a significant FFMR while the VT contracts less vigorously. Given the requirement for tongue protrusion

demonstrated in section 10.2, it can be concluded that the strength of contraction of the VT is less than ideal.

2 Increasing the number of coefficients in the spline polynomial caused this curve to start displaying some of the high-frequency

oscillations that we wish to smooth out. Reducing the coefficient resulted in over-damping of the solution.
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Figure 11.4: The VWA fibre stretch history for all tongue muscles under control of the neural model. This

demonstrates that, according to this measure, all muscles are kept in an overall state of compres-

sion.
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Figure 11.5: Upon decomposition of the of the control point displacement history, it is observed that the

tongue tip moves most in the posterior direction while the centre of the upper surface is dis-

placed superiorly. The rear of the tongue undergoes sub-millimetre movement in both of these

directions. The lack of symmetry of the model resulted in lateral movement of the tongue.

The interplay between the muscle groups does however successfully maintain the vertical position of the

tongue tip. The middle of the superior surface, denoted as PB , experiences a superior displacement of be-
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tween 1 ´ 1.5mm. Greatly influenced by both the GGm and GGp, a balance must be reached between the

position of this point as well as PC and PD (and the additional control points not illustrated). Each of these

control points moves only slightly in the anteroposterior direction. Additional contraction of either of these

muscles must result in a overall unacceptably large perturbation of the control points concentrated on and

near the rear surface of the tongue.

The resulting oscillations of both the displacement and FFMR around their perceived ideal value are quite

large. However, it should be emphasised that no optimisation of the control and input parameters has been

made at this point.

11.2 Environmental influences

In demonstrating the characteristics of the neural model, it has already been shown that alteration of the

physical conditions governing the loading on the upper airway soft tissues results in variable behaviour in

the tongue muscles. It is sensible to suspect that these muscles will react differently due to a variation of the

applied pressure field and gravitational orientation. In this section, it is demonstrated how these parameters,

as well as variation of the breathing cycle itself, influence the response of the tongue.

11.2.1 Gravitational orientation

Sleep posture, and the consequent body forces acting on tissues, have been shown to produce large deforma-

tion in the passive tongue. Depicted in figure 11.6 is the predicted response of the GG to resist this motion

during inhalation for a number of orientations.
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Figure 11.6: Muscle response due to orientation of gravitational force (oral inhalation). The solid lines repre-

sent linear regression functions plotted against the smoothed data, shown as dashed lines. The

contractile response of both muscles appears linear with respect to the epiglottal pressure. The

smoothed result does not reflect that the predicted muscle activation for the upright gravitational

configuration tends to zero when the pressure is removed.
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Increasing the angle of incline effectively reduces the magnitude of the gravitational force vector in the di-

rection that would cause the tongue to fall back into the retroglossal space. The response of both muscle

groups is significantly affected by posture. Several important characteristics pertaining to the role of these

muscles is revealed in this data. Firstly, the overall trend for both muscle groups is that the required con-

tractile strength increases as the orientation changes from the upright to supine configuration; however, this

response is nonlinear with respect to the angle of incline. Additionally, the minimal activation level present

at zero-load increases. This indicates that a firmer tone must be maintained by both muscles to prevent the

tongue from falling into the oral cavity at a greater recline. The peak-to-peak amplitude remains constant for

both muscles in all cases, suggesting that this portion of the response is not affected by gravity.

The stark difference visible in response of the two muscles in the presented data is due to the combined

influence of the gravitational orientation and distribution of pressure load. It has already been demonstrated

that both the GGp and GGm have significant control over the position of the posterior and superior surfaces

of the tongue in the sagittal plane. The GGp activates to resist the negative airway pressure from drawing

the tongue posteriorly towards the pharynx, while the GGm primarily prevents the tongue lifting due to

the pressure. As the posture moves towards the supine, the body force vector aligns better with the GGp.

Similar to that illustrated in figure 9.6, the moment generated around the fixture point of the mandible due

to body forces is such that increasing contraction of the GGm is required to prevent the superior region of the

tongue from displacing backwards in the oral cavity. This in turn results in less force being generated by the

GGp in order to oppose the gravitational force and describes the distinct change in response of both muscles

between the supine and 30˝ incline orientation. The peak value for the upright case is less than the trough

value for the supine orientation. This infers that, in terms of required contractile effort, sitting upright is the

equivalent to an increase in epiglottal pressure of in excess of 500Pa. Increasing the inclination angle by 60˝

reduces the gravity vector by half in the posterior direction and results in halving the necessary contraction

force generated in the GGp.

The GGm is more sensitive to an increase in incline, in that an increase in orientation angle at a small θ

significantly reduced the required contraction level of this muscle. Furthermore, the GGm response is more

greatly affected by contraction of the surrounding muscle groups than the GGp. The response of these other

muscles remains minor in all instances. The most prominent auxiliary muscles in the supine configuration are

the TV, SL and HG which have an FFMR range of 0.3 ´ 0.65%, 0.32 ´ 0.57% and 0.18 ´ 0.31% respectively,

while in the upright orientation the SL and TV were both predicted to contract at between 0 ´ 0.27% of their

maximum strength.

With reference to figure 10.10, the results given here are well within the limits defined in section 10.4. The

synergistic activation of multiple muscles clearly results in a reduction in the contractile force required to be

generated by the dilators. This demonstrates the importance of muscle coordination within the tongue during

breathing as the measured efficiency of the dilatory action of the GG is much greater when coactivation of

several muscle groups is present. Furthermore, this confirms that the neural control model is quite effective

at coordinating muscle activation in an effective manner.

A brief investigation involving laterally aligned gravitational forces, indicative of a subject lying on their

side, was conducted. For these cases, symmetry of the muscle activation between split groups such as the

IL was removed. It was observed that a response similar to the upright configuration was obtained and an

asymmetrical activation of the split muscle groups was obtained. This was likely due to the lack of a posterior

component of gravity. The activation response of these muscles remained insignificant in comparison to

the GG components in figure 11.6; and increasing the size of the active muscle set significantly increased
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computational cost. These cases were not concentrated on further in the study. However, this result remains

important to note as it is inferred that rotation of the head in the transverse plane does not affect the response

of the airway dilators.

11.2.2 Pressure distribution

It is hypothesised that significant differences in pressure distribution in the oral cavity can arise depending

on the orifice though which inhalation takes place. In oral breathing, it is assumed that the pressure reduces

significantly along the length of the tongue due to the proximity of the tongue to the hard palate and the

low CSA of the buccal region of the oral cavity. In contrast, during nasal inhalation, pressure loss is most

significant in the nasal passages and the it remains largely constant in the oral cavity. A third scenario to be

considered is that when the nose is utilised for breathing but the mouth remains open.

A fair first-approximation to oral breathing is to presume that the pressure loss along the length of the tongue

is linear. Additionally, the pressure distribution on the posterior of the surface is assumed to remain constant

as the CSA of the pharynx is larger than the oral cavity. In the case of nasal breathing, the hypothesis of no

fluid flow in the oral cavity infers that there exists no spatial pressure gradient over this anatomy. However,

the pressure is non-zero as losses occur in the nasal passages. In the mixed third case, the oral cavity, open to

the atmosphere, experiences zero gauge pressure while the posterior surface of the tongue, in the presence of

the pharynx, experiences a negative airway pressure.

Figure 11.7 demonstrates that a marked difference in the response of the airway dilators exists between these

three scenarios.
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Figure 11.7: Muscle response for differing spatial distributions of pressure load (supine orientation). The

response remains linearly dependent on the applied pressure , but is qualitatively different in

each loading case.

The case of oral breathing, which has been previously presented, demonstrates activity of both the GGm and

GGp in resisting motion of the upper and posterior surfaces of the tongue. A spatially constant pressure

distribution results in a completely different response in these muscles. The difference in curvature on the

front and rear surfaces of the tongue is not sufficient to result in a anteroposterior force requiring the input

of the GGp to resist; it however continues to contract in resistance to the gravitational load. This force is very
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large in the third scenario, requiring greater contraction of the GGp than in the case of oral breathing.

For the case of nasal inhalation, the load on the upper surface of the tongue remains unbalanced. How-

ever, the generated moment with a normal perpendicular to the sagittal plane is lessened by the lack of the

anteroposterior force that would otherwise assist in lowering the tongue posterior and raising its tip. This

combined effect results in the GGm having a lesser oscillatory FFMR response in this case than observed for

oral inhalation. Completely eliminating the pressure load on the tongue surface, as is done in the third sce-

nario, reduces the GGms contraction response to the pressure almost entirely and the remaining contraction

purely resists gravitational forces. This is as the upper surface undergoes little superior motion due to the

posteriorly applied load.

11.2.3 Pressure loading magnitude

The airway pressure, affected by the CSA of the airway, influences the volume flow rate through the open

orifice. When deeper breaths are taken or an apnoeic event occurs, a decrease in the upper airway pressure

is induced. Figure 11.8 illustrates the predicted response of the GG at a range of applied pressures. Note

that changing pnom induces a change in both loading magnitude and loading rate. Rate effects in the muscle

response therefore may play a role in the results observed in figure 11.8.
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Figure 11.8: Muscle response due to change of pressure load (oral inhalation).

In both of the results shown, the trends in the response appeared to correspond very closely to the applied

load. It was observed that a near-linear increase in GGp FFMR could be predicted as the airway pressure

dropped, and in all cases the zero-load FFMR was comparable. The response at low nominal pressures is flat,

with a trend of an increasing peak pressure as the nominal pressure value increased. This corresponded well

with the notion that the GGp acts as the main airway dilator.

The response of the GGm was consistent with the GGp in that there is an overall increase in muscle con-

traction as the applied load increases. However, the response is more erratic again due to the influence of

the surrounding secondary muscles. Furthermore, due to the gravitational load, the overlap of functionality

between these two muscles contributed further to this effect. Overall, the result for the GGm required further

refinement before a definitive quantification of the response could be made.
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As seen previously for the supine case, the next most influential muscles in all of these scenarios were the SL

and TV. The predicted FFMR for these and all other muscles scaled linearly with the nominal pressure.

11.2.4 Temporal load pattern

Deviations from the “normal” breathing pattern during exertion (such as in exercise or an apnoeic event)

may take several forms. Changes to the loading pattern could be elicited as part of this process. The temporal

dependence of the function describing the loading was modified to assess the dependence of muscle response

on the loading pattern. This was performed by increasing or decreasing the loading rate in various stages of

the inhalation cycle. Figure 11.9 depicts the four loading cases evaluated. In the one case, a rest period was

introduced to determine whether the GA would hold the muscle response steady once the load had been

removed.
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Figure 11.9: Temporally dependent nominal pressure value describing different inhalation pressure loads.

Cycle 1 is the loading pattern used in previous examples. Cycles 2 and 3 increase the rate of the

load change as the start and end of the inhalation process respectively. Cycle 4 includes a resting

period at the end of inhalation.

The result reinforces the perception that the muscle activation pattern is a direct response to the applied

load. For the medial and posterior GG, the activation level appears proportional to the epiglottal pressure.

The response of the GG constituents, shown in figure 11.10, closely follows the temporal description of the

loading pattern in all cases. As first observed in section 11.2.3, the GGp activation pattern matches the loading

curve more accurately than the GGm.

For both the GGp and GGm, the maximum amplitudes remain very similar in all cases. However, the min-

imum values seen at the end of each loading cycle are slightly inconsistent. This could be a post-processing

artifact. For all muscles, it was observed that during the rest period introduced in the fourth loading case, the

FFMR remains largely consistent with that expected. Overall, the change in loading rate incurred by chang-

ing the loading pattern did not appear to significantly alter the characteristics of the response of the muscles

of the tongue.

The link already established between the nominal load and the muscle FFMR infers that more rapid changes

in the activation level are required to counter the changing load. Clearly a very different activation history
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Figure 11.10: Muscle response due to change in rate of change of pressure load by means of altering the

temporal shape of the inhalation cycle.

is necessary for each breathing cycle in order to impose position control of the tongue under temporally

different pressure loads.

11.2.5 Breathing cycle period

Proceeding from section 11.2.4, the time period over which an inhalation cycle was performed was system-

atically reduced from a value of 2.5s, representing a slow relaxed breath, to 0.25s, a sharp gasp that may be

utilised during an apnoeic event. As a result, a more direct assessment of load-rate dependence is performed.

The time-step size was reduced to maintain 500 steps per simulation.

It was observed in figure 11.11 that there exists a strong dependence of the tongue response on the duration

over which a breathing cycle occurs. It was noted that as the cycle period decreased, the strength of contrac-

tion of the GG at peak pressure increased. This can be directly explained by the increased rate of contraction

required to overcome the more rapidly applied load. The force-velocity relationship depicted in figure 6.6 de-

scribes the corresponding decrease in effectiveness of the muscle as the rate of shortening of the CE increases.

During the loading phase, the velocity of contraction must increase to oppose the force, leading to higher

FFMR values being recorded during this part of the cycle and at peak pressure. At higher frequencies during

loading and unloading the muscle response is similar for all cases as the value for fV
c is maximised and con-

stant at a relatively low extension rate and thus the strength of contraction effectively becomes a function of

the CE length. Particularly for the GGp, it appears that the zero-load FFMR is reduced with increasing load

frequency.

Overall, the response of the GGp appears predictable and directly related to the epiglottal pressure, while the

GGm again has a slightly erratic response. However, the stark contrast in the responses between the shortest

and longest loading frequencies indicates that, for the latter muscle group, the trends remain similar to those

observed for the GGp.
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Figure 11.11: Muscle response due to change in rate of change of pressure load by means of altering the

inhalation cycle period. The time scale has been non-dimensionalised for ease of comparison

between results. The poor result during the first cycle of the 0.25s test demonstrates that the

activation parameters needed to be adjusted to increase the agility of the tongue to respond to

both the gravitational load and the sudden increase in pressure load.

11.3 Physiological parameters

The primary physiologically linked parameter thought to influence the functioning of the tongue is the fibre

volume fraction φf. This is related to the proportion of interstitial and adipose present in the tissue. Parame-

ters related to the muscle model include the activation rate parameters τR, τF and the contractile force scaling

constant T s
0 . A discussion on the influence of the first two parameters is presented below.

11.3.1 Muscle fibre volume fraction

The determination of the role of fibre volume fraction in muscle response is important when considering

conditions that affect the ratio between muscle fibre and matrix. Pathologies causing an accumulation of

adipose tissue, such as in obesity or loss of muscle bulk as in muscular degenerative diseases, influence this

ratio.

Due to the complex spatial description of the muscles and the difficulties in determining their spatial volume

fraction, a simplistic view of the local fibre/matrix decomposition has been adopted. In terms of describing

the force generating properties of each local muscle fibre, the volume fraction occupied by the fibre (described

by equation 5.2) acts as a force scaling factor (see equation 5.6c) and it is thus reasonable to assume that a

linear change in the global fibre volume ascribed to the muscular tissue would elicit a proportional response.

Figure 11.12 illustrates that this is indeed the case. The predicted peak-to-peak FFMR remains within 5% of a

linear response for the GGp, while the GGm response is at worst within a margin of 9% of the linear response.

Given a situation in which the local volume fraction does not change uniformly in space, this result would

not necessarily be as predictable.

Considering the linear relationship between body BMI and the fat content of the tongue shown in table 6.3,

this data indicates that the neural control mechanism for the tongue must be significantly affected as the body
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Figure 11.12: Muscle response due to change the ratio between fibre and matrix volume fractions in the

tongue. The muscle activity required to oppose the applied force is directly proportional to

volume occupied in the tongue by the muscle fibres.

fat content changes. The resulting increase in posterior-tongue adipose tissue content from 30% to 60% as the

BMI increases from 25 to 55 requires the GGp to contract on average 98% more intensely at resting state in the

supine position and 89% when the epiglottal pressure is 500Pa. The corresponding increase in contraction

intensity for the GGm are 110% and 127% respectively at rest and under load.

11.3.2 Rise and decay parameters

The rise and decay parameters τR, τF determine the rate at which the activation level changes due to the

applied neural signal. The change in contraction strength between discrete time-steps, and thus the gradation

of the control response, is directly associated with this parameter. As these parameters are nominated a priori,

a balance must be struck between the necessity for agility and smoothness of the muscle response for the

given scenario being simulated.

Figure 11.13a demonstrates that for the given loading pattern, a wide choice of activation rate parameters

result in the same trend for the position control of the tongue. It was observed that, with increasing values for

the parameters, the changes in displacement solution between time-steps became less erratic. This is related

to the change in contraction strength between time-steps, illustrated for the GGm in figure 11.13b. When the

muscles are made highly responsive, oscillations around the optimal FFMR value are large in magnitude.

This over-sensitivity leads to rapid changes in position and ultimately difficulties in finely adjusting the

tongue posture.

The choice of more suitable activation parameters reduces oscillations of the FFMR value around the mean

trend. This will ultimately lead to more accurate and reproducible results, and significantly reduce uncer-

tainty in the analysis of the trends in the contraction patterns for each muscle group. Using the splined result

for each individual case as a baseline, a quantification of the magnitude of the oscillations around the trend

was performed to determine the increase in accuracy gained through more careful selection of the parame-

ters. Table 11.2 indicates that up to a 60% reduction in magnitude of the oscillations is achievable through

careful selection of the muscle activation parameters.
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Figure 11.13: Behaviour of the neural model due to the change in muscle activation parameters. Altering the

responsiveness of the tongue muscles affects the accuracy of the unfiltered prediction for the

tongue response.

Table 11.2: Root mean squared error (RMSE) between raw FFMR data and B-spline result trends for each

simulation. The tabulated value, expressed as a percentage, relates the magnitude of the error

associated with the raw data relative to the splined results averaged out between all of the five

simulations, i.e. RMSE “

d
1

n

nÿ
pxn ´ x̄q2. The values leading up to the first peak of the loading

were discarded as the rate at which the muscles respond to the sudden gravitational and pressure

loading leads to different and incomparable behaviour in this regime.

Muscle
Activation parameters τR, τF

150ms 250ms 500ms 750ms 1000ms

GGm 22.53 17.66 11.65 8.77 7.70

GGp 18.08 14.31 9.00 6.77 5.33

11.4 Summary and discussion of results

Collectively between the results shown in sections 11.2.1 and 11.2.2, it has been demonstrated that the GGp

takes the role of the primary airway dilator, counteracting the anteroposterior pressure gradient developed

in the oropharynx. The GGm primarily resists lifting forces acting on the superior surface of the tongue.

However, the two muscle components have overlapping functionality and thus collectively act to resist forces

causing motion during inhalation. This validates the initial observations made regarding the function of the

GG components in section 10.4.

Application of the non-optimised neural model has demonstrated that the predicted pressure-activation re-

lationship, appears qualitatively similar to that shown in the literature [111, 3] and that the influence of

environmental and physical parameters on this response appears, in some cases, predictable. It has been

shown that the head and neck posture [205, 122, 269, 15, 8, 18] has a major influence on the contractile effort

of the GG required to maintain the spatial position of the tongue. The relationship between the epiglottal

pressure and GG activation has also been shown to be highly sensitive to the pressure distribution on the
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tongue, and it was demonstrated that the load simulating oral inhalation leads to greater force generation

requirements by the GG. This indicates that any mechanism, such as increased nasal resistance or obstruc-

tion [238, 294, 227, 236, 75, 174, 250], leading to the preferential use of the mouth during inspiration may

result in the retroglossal movement of the tongue if neurological weaknesses in the functioning of the GG

exists. Furthermore, the response of both muscles are significantly affected by magnitude and the proportion

of tongue body occupied by muscle fibres, indicating a link to the tissue deposits synonymous with obesity

[125, 173, 191, 33, 8].

Further discussion

Although some difficulties and inconsistencies exist, it has been demonstrated that, generally, this model

is useful in predicting trends in the response of the constituent muscle groups of the tongue subjected to

external influences. The robustness of the neural model is, for example, illustrated in section 11.2.4. The

result shown here is somewhat independent of choice of τR and τF , parameters that have not yet been op-

timised, demonstrating that the methodology can produce reliable predictions over a wide range of loading

parameters. Numerous mechanisms for increasing the accuracy of the model are presented and will be col-

lectively employed from this point on. These will assist in minimising the error associated with the post-

processing mechanism (smoothing the results), essentially due to the oscillatory nature of the response from

the neural model. Further factors that were evaluated for the purpose of model optimisation are presented

in appendix G.

The mixture of fast- and slow-twitch fibres present in the tongue allows for it to move with high precision

and through a large range of speeds. It has been shown that the use of more physiologically consistent values

for the rise and decay parameters results in a very sensitive model, demonstrating that the tongue has the

ability to react to stimuli that are applied far more rapidly than those applied in this work. Considering

their role in the neural model, it functions optimally when they are no longer interpreted as physiologically

derived values and rather as optimisation parameters that are bounded by physiological constants. From

these results, it was determined that a satisfactory choice for τR, τF , leading to good responsiveness with

minimal solution overshoot, could be made with

τR “ τF “
1

10

1

β
ω (11.1)

where ω is the loading cycle period and β P t0.5, 1u set according to whether a full cycle of inhalation and

exhalation was simulated (β “ 1 in this case) or whether half of the breathing cycle was considered, as has

been done up to now.

It has been demonstrated that there are many factors that influence the outcome of each simulation. What

is apparent, although not specifically discussed, is the predictably replicable nature of the results. Although

the GA employed in the neural model is non-deterministic, the evaluated population size was small and

non-optimal model parameters were utilised, the model was successfully able to follow the applied load and

produce a sufficiently adequate and physiologically reasonable result. Given a fixed set of parameters, the

model will reproduce the muscle response with a fair and comparable degree of precision. Furthermore,

given the non-optimal parameters, the GA nevertheless is able to predict quantitatively sensible trends in

results. This provides confidence that the model is robust enough to cope with and produce sufficiently

accurate results under complex loading conditions.
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AIRWAY PRESSURE DISTRIBUTION

A basic CFD model was designed to gain insight under various conditions into the pressure distribution on

the tissues lining the airway. There are many factors that might affect the pressure profile of the airway, all of

which change with both time and the associated response of the airway muscles. These include the geometry

of the airway, the instantaneous flow rate and the breathing pattern. As the problem is very complex, it was

studied under simplified and restricted conditions, namely assuming a static geometry and steady state flow.

A physiologically plausible model was developed to understand the fundamental flow characteristics and

compute airway pressure distributions in a healthy individual during light and moderate-to-heavy breathing.

The primary purposes of this model is to determine the likely state and phase of breathing that leads to low

epiglottal pressures and unfavourable pressure distributions on the tongue. By simulating breathing through

the nose and mouth, the effect that these had on the airway pressure profile was deduced. The pressure

data from these models was exported to the tissue model to evaluate the tissue movement under passive

conditions, as well as the muscle response required to resist movement and potential airway collapse.

In the interest of brevity, this chapter will focus solely on the pressure distribution in the airway and on the

tongue. The details of the simulation procedure, discussion on the flow characteristics, and validation by

means of a comparison to the literature is presented in appendix H.

12.1 General pressure profiles

The general pressure profiles developed during oral and nasal breathing are presented. The differences be-

tween inspiration and expiration are discussed for each case.

12.1.1 Nasal and oral inspiration

During nasal inspiration there is a significant pressure drop through the nasal passages (approximately

50 ´ 60% static pressure loss at all measured flow rates). Figure 12.1a depicts the static pressure field devel-

oped during normal breathing. Note that in the region of the velopharynx (the region between nasopharynx

and pharynx that is bounded by the uvula), a flow restriction that acts as a converging nozzle is present.
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There is only a slight pressure drop across the velopharynx (not discernible in the image) and no significant

pressure recovery once flow enters the pharynx. The pharyngeal pressure does not change appreciably along

its length; however, a large pressure loss occurs across the laryngeal constriction at the junction between the

pharynx and trachea. A significant feature of the pressure field is that the pressure in the oral cavity appears

constant, resulting in little fluid motion in this region. Although the pressure is less than atmospheric, this

is still physiologically accurate assuming the lips are closed and preventing an ingress of air through the

mouth. If the oral cavity were to be sealed off by the posterior portion of tongue pressing against palate (as

does happen during normal nasal breathing with one’s mouth open), then the pressure in the oral cavity

would be atmospheric and only the posterior surface of the tongue experiences the negative airway pressure.

(a) Nasal inspiration (b) Oral inspiration

Figure 12.1: Static pressure on the midsagittal plane during inspiration at 60L/min.

Illustrated in figure 12.1b for the case of normal oral inspiration, a high pressure loss at the external opening

to the oral cavity exists due to impingement of flow by tongue. This phenomenon is not necessarily consistent

with normal physiology and bodily functioning where the tongue drops inferiorly to allow air to flow over its

upper surface1. Also potentially inconsistent with reality is the flow around the sides of the tongue. This flow

feature is present because the teeth (which usually form a lateral barrier to flow movement) were removed

from the geometry due to their contact with the tongue. The lifted position of the tongue further exacerbated

the issue.

The average static pressure drop between the atmospheric boundary and the rear of the tongue was 59%

of the total value at the stipulated flow rate, with a range of 53 ´ 63% for the tested flow rates. The static

pressure was, again, nearly constant along length of pharynx, although lateral movement of air from the oral

cavity into the pharynx resulted in secondary effects due to the formation of turbulent vortices. Similar to the

previous case, the nasopharyngeal region experienced the same pressure as the velopharynx. This may be

physiologically inaccurate as such a negative pressure in the nasal passage would cause air to flow into the

nasal passage through the nasal vestibule. This scenario can be obviated by opening the mouth sufficiently

1 Jayaraju et al. [131] demonstrates the physiologically correct position of the tongue during inhalation.
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and depressing the tongue, minimising pressure drop through oral cavity into the pharynx and making this

the preferential pathway for the air.

Comparing the two cases, it is clear that the pressure profile in nasopharynx and oropharynx varies signifi-

cantly depending on whether nasal breathing or oral breathing takes place. In both cases there was a large

pressure drop across laryngeal constriction. For the cases illustrated here, the total pressure drop between the

atmosphere and the bronchus appears roughly similar for a constant flow rate. The preliminary results pre-

sented in chapter 11 suggest that these base cases did not result in pharyngeal pressures low enough initiate

appreciably large deflections of the active tongue. The measured epiglottal pressure, approximately ´180Pa,

was significantly larger than that necessary to institute large deformations of the tongue or precipitate a loss

of dilator reflexes.

Figure 12.2 illustrates the pressure distribution on the tongue surface. Distinct differences between oral and

nasal breathing are evident from these results.

(a) Nasal inhalation (b) Oral inhalation

Figure 12.2: Air-pressure distribution on the tongue surface for inspiration at 60L/min.

In the case of nasal breathing, the pressure distribution on the surface of the tongue remained nearly constant

as hypothesised in the simplified FEM case study of the tongue. As there was little difference in pressure

between the anterior and posterior surfaces, it could be expected that the anteroposterior pressure force

generated on the tongue was minimal. Oral breathing resulted in a significant pressure drop across the length

of the tongue, which was synonymous with the hypothesised case of a linear pressure profile. It could be

expected that this pressure distribution would draw the tongue posteriorly into the oropharynx. Comparison

between this case and that of nasal breathing provided an insight into why OSA is prevalent in instances of

mouth breathing.

12.1.2 Nasal and oral expiration

To highlight the differences between expiration and inspiration, a scenario similar to that presented in sec-

tion 12.1.1 is produced with the velocity at the tracheal boundary now altered such that this boundary repre-

sents an inlet and the oral or nasal features an outlet. Expiration is thus simulated at a constant flow rate of

60L/min.

The midsagittal pressure fields attained during expiration are shown in figure 12.3. A notable feature of

nasal exhalation is that the pressure field in buccal cavity, like during inspiration, has a largely constant

distribution. A pressure gradient between the superior and inferior surfaces of the soft palate was observed.
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Significant pressure losses occurred at the laryngeal constriction and in the region of the velopharynx. A

local high pressure region was observed at the tip of the uvula due to the stagnation point present as the flow

divides between moving into the oral and nasal cavities.

(a) Nasal expiration (b) Oral expiration

Figure 12.3: Static pressure on the midsagittal plane during expiration at 60L/min.

In the regions inferior to the hypopharynx the pressure distribution developed during oral expiration, il-

lustrated in figure 12.3b, was remarkably similar to that on nasal exhalation. However, a large pressure

difference existed between the pharynx and mouth. Similar to the previous case, the uvula tip experienced

high pressures due to flow stagnation at this point.

The pressure distribution on the tongue during expiration are depicted in figure 12.4. From these images,

distinct differences between oral and nasal breathing were evident. The tongue was exposed to a constant

positive pressure during nasal expiration and a pressure gradient in the anteroposterior direction when oral

expiration occurs. Figure 12.4b suggests that a suitable first-approximation to the latter scenario would be a

linear gradient with the posterior region exposed to a high pressure and the anterior a low pressure. In both

cases the entire tongue surface experiences a pressure greater than atmospheric pressure. This would result

the development of a resultant force acting to move the tongue anteriorly in the buccal cavity.

12.2 Airway pressure drop due to flow rate change

A spectrum of flow rates was evaluated to determine its influence on the pressure distribution and loss in

the pharynx. The volumetric flow rates chosen ranged from those representative of very light breathing

(5L/min), through the average flow rate during moderate or natural breathing (60L/min), to an estimate of

the peak flow rate during gasping (180L/min), which conceivably would be the result a loss of pharyngeal

patency.
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(a) Tongue: Nasal expiration (b) Tongue: Oral expiration

Figure 12.4: Air-pressure distribution on the tongue surface during expiration at 60L/min.

Tables 12.1 and 12.2 present the volume-weighted average pressure distribution measured at various sections

of the airway along the path which the fluid flows through during inspiration. Firstly, an examination of nasal

inhalation is performed. The magnitude of the pressure loss or recovery increases almost quadratically as the

flow rate increases. Pressure recovery was observed in most instances in the upper pharynx and the trachea,

although it was marginal in comparison to the pressure magnitude due to previously experienced losses.

Although the pharyngeal pressure at 60L/min appears too marginal for the loss of reflexive mechanisms in

the GG, at 120L/min the negative pharyngeal pressure is in excess of 500Pa which could precipitate such an

event.

Table 12.1: Pressure loss in HUA at differing flow rates during nasal inhalation. The value describes the aver-

age pressure loss between the upstream and downstream measurement surfaces. The measured

pressure losses in the nasal passage compared favourably with the literature (see [307, fig. 5]).

The highlighted entries represent regions that are in the pharynx.

Flow rate (L/min) 5 15 30 60 90 120 150 180

Upstream Downstream Static pressure loss (Pa)

Vestibules Anterior nasopharynx 2.4 11.3 35.1 116.5 240.2 406.5 618.8 889.4

Anterior nasopharynx Upper velopharynx 0.6 4.5 16.8 64.4 142.9 248.6 385.1 549.0

Upper velopharynx Upper pharynx 0.1 0.1 -0.9 -6.3 -15.9 -31.7 -58.0 -80.0

Upper pharynx Upper hypopharynx -0.1 -0.3 -1.7 -11.1 -25.9 -36.0 -50.0 -74.0

Upper hypopharynx Upper larynx 0.3 3.1 11.8 46.8 108.4 187.4 301.0 434.0

Upper larynx Upper trachea 0.6 4.4 16.2 49.8 107.2 173.7 227.0 325.0

Upper trachea Lower trachea -0.1 -2.0 -8.4 -33.5 -75.0 -130.2 -216.0 -277.0

Inlet Outlet 4.1 21.8 71.1 139.9 492.6 835.11 1230.0 1821.4

An evaluation of the flow rate effect on pressure-losses during oral breathing demonstrates that the losses

in the oral cavity can be large enough to create a change in the response of the airway and tongue dilator

muscles. During normal oral breathing, the losses in the buccal cavity reduce the epiglottal static pressure;

however, only at flow rates upwards of 120L/min the pharyngeal pressure reduces to below the suggested

critical value of ´450Pa [111]. There is no pressure recovery in the pharynx during oral inhalation. Due

to similarities in the flow-field, the pressure drop in the sections inferior to the epiglottis are quantitatively

similar for both the cases of oral and nasal inhalation.

PAGE 191



12 ‚ CFD STUDY DETAILING UPPER AIRWAY PRESSURE DISTRIBUTION

Table 12.2: Pressure loss in HUA at differing flow rates during oral inhalation. The value describes the av-

erage pressure loss between the upstream and downstream measurement surfaces. At low to

moderate flow rates, the total pressure loss between inlet and outlet at various flow rates is of

the same order of magnitude as that measured in an idealised geometry [196]. The highlighted

entries represent regions that are in the pharynx.

Flow rate (L/min) 5 15 30 60 90 120 150 180

Upstream Downstream Static pressure loss (Pa)

Mouth Posterior oral cavity 1.5 9.1 30.2 107.6 223.6 382.6 580.0 829.6

Posterior oral cavity Upper hypopharynx 0.4 1.9 5.3 15.4 30.4 44.0 52.5 77.0

Upper hypopharynx Upper larynx 0.4 3.2 11.9 48.1 104.8 189.9 298.0 455.0

Upper larynx Upper trachea 0.6 4.6 15.7 51.4 99.2 189.7 299.0 349.0

Upper trachea Lower trachea -0.1 -1.6 -8.9 -33.6 -74.2 -145.3 -247.0 -317.0

Inlet Outlet 3.1 18.6 59.8 122.1 413.1 710.7 1034.5 1472.3

12.3 Summary and discussion of results

The model of the airway was evaluated under steady state conditions, testing numerous breathing be-

haviours and validating the reduced-complexity representation of the nasal passages. Correlation of flow

phenomena and measured pressure drops within certain regions of the anatomy and those data presented in

the literature demonstrates that the model is sufficiently accurate for the aims of this work.

In summary, oral inhalation leads to an anteroposterior pressure gradient across the length of the tongue that

may lead to its movement into the retroglossal space. The assumed simple load distribution for oral breathing

described in section 8.6.3.3 appears to be qualitatively representative of that shown in figures 12.2b and 12.4b.

Nasal breathing with a closed mouth results in a near constant distribution of pressure on the surface of the

tongue, qualifying the load distribution assumption made and likely resulting in little movement due to air-

induced force. Exhalation develops positive pressures throughout the airway which, due to its geometry,

may lead either to minimal or anterior movement of the tongue in the cases of nasal and oral breathing

respectively.

An increase of flow rate during oral inhalation leads to a greater pressure gradient between the anterior and

posterior surface of the tongue. Nasal inhalation at high flow rates generated high pressure losses in the nasal

passages; this is unsurprising as a near constant pressure field on the tongue surface was always predicted.

Collectively, these results indicate that oral inhalation creates a scenario most likely to produce posterior

motion of the tongue. It was observed that the threshold epiglottal pressure required for the loss of GG

reflexes during sleep could be achieved at moderate-to-high flow rates during inspiration through either the

nose or mouth.
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13. MUSCLE RESPONSE TO SIMULATED

BREATHING AND CONDITIONS OF

PHARYNGEAL COLLAPSE USING STATIC

AND DYNAMIC LOADING

In the previous chapters, various aspects of the muscle and neural model development with respect to the

tongue were highlighted. Data that demonstrated which factors are most significant determinants of the

active response of the constituent muscles of the tongue was presented. Points pertaining to the optimisation

of the model parameters were also discussed, although an optimised model had not yet been utilised. Using

this data, an optimal set of control parameters were chosen and from this point on the model is considered

optimised in all respects to a level that are currently is feasible. Furthermore, a fluid model was produced to

capture more realistic pressure data and qualitatively compare the observed pressure distributions to those

assumed in earlier simulations of the tongue.

This chapter is devoted to utilising the optimised tongue model to achieve three goals. Firstly, it will be deter-

mined whether a quasi-static model can be representative of the dynamic phenomenon that is OSA, caused

by complex fluid-structure interaction. This will be useful as then computationally inexpensive means of

evaluating these problems may be made possible. In doing so, validation of the simplified, assumed pres-

sure distributions for the dynamic cases will be performed by evaluating the muscle response. In summary,

the two simulation mechanisms will validate different aspects of one another.

Secondly, with the dynamic model optimised in terms of control parameters, aspects of the functioning of

the GG will be analysed in more detail. A determination of the spatially-dependent force-generation charac-

teristics will be made factoring in the influence of the surrounding muscles. Such information may be useful

in understanding the consequences of surgical procedures, such as implants or the removal of tissues due to

the formation of tumours or necrosis.

Finally, once validated models have been produced, we will present analytical models which replicate the

response predicted by the neural model. These will be formed in such a way that the effect of the environ-

mental influences will be clear. This will allow the simulation of deficiencies in the response of the tongue

musculature, thereby reproducing a number of scenarios that may lead to an OSA event. Both the simulated
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response of the GG and the magnitude of the predicted retroglossal movement will be documented for two

cases; one that represents the threshold of the onset of an OSA-type event and one that simulates a complete

loss of airway patency.

13.1 Quantification of muscle response with static loading derived from

CFD models

In chapter 12, simulation of nasal and oral inhalation was performed under steady state conditions at numer-

ous volume flow rates. The pressure distributions obtained from these models were extracted and applied

directly to the model presented in chapter 11. Due to the steady nature of the fluid model, a similar approach

was observed in conducting these simulations. A quasi-static approach, the conditions of which were pre-

viously detailed in section 8.6.3.1, was adopted and time represented an evolution parameter for the neural

activation. It was assumed that, over numerous pseudo-time-steps, the neural model would evolve the set

of activation parameters to the optimum value, balancing the energetic characteristics and spatial control.

However, no further optimisation of the model (swapping from one best suited for dynamic simulations)

was considered. In all, 250 evolution steps were used in each simulation, with the average neural stimulus

for the last 150 taken as the values shown in the following illustrations.

First it was thought prudent to evaluate the pressure loads on the tongue as predicted by the fluid simulations

and compare them with those initially used in chapter 11. Figure 13.1 depicts the pressure load, averaged over

the anterior, superior and posterior surfaces of the tongue, for inhalation from two orifices under increasing

volume-flow rate1. Qualitative comparison between this data and figure 8.15, the equivalent measurement

for the assumed distributions simulating both cases, can be made to determine discrepancies between the

two cases.
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(a) Nasal inhalation

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1,000

1,200

1,400

1,600

Volume flow rate rL/mins

N
eg
at
iv
e
ai
rw

ay
p
re
ss
u
re

rP
as

Anterior Superior
Posterior Antero-posterior difference

(b) Oral inhalation

Figure 13.1: Area weighted average air-pressure (derived from CFD analysis) applied to the tongue surface.

In both cases, the average pressure generated on all surfaces increases quadratically with increasing inlet

velocity. During nasal breathing, an anteroposterior pressure gradient is developed and the average pressure

on the superior and posterior surfaces are nearly identical. This is dissimilar to that which was previously

proposed, where zero anteroposterior pressure gradient was assumed. However, oral inhalation leads to the

1 The reader is referred back to figure 12.2 for a visual comparison between the pressure conditions developed during oral and nasal

inhalation.
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development of a far more substantial pressure gradient; at high flow rates, the gradient is 2 ´ 3 times that

of nasal inhalation and it becomes more substantial at lower flow rates. Interestingly, the posterior surface

experiences similar pressures in both cases2 and the superior surface is exposed to a greater lifting force

during nasal inhalation.

The load distribution generated during oral inhalation is predicted to produce displacements of the passive

tongue qualitatively comparable to that of the assumed load in the dynamic case. Comparing figure 13.2 to

figure 9.7, it is observed that the displacement history at PC as the epiglottal pressure decreases is linear in

both cases.
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Figure 13.2: Anterior displacement of point PC on passive tongue due to pressure loading.

However, the resulting displacements from the CFD derived loads are significantly lower (on the order of

3mm at 1000Pa for the upright case, corresponding to 100% of the pressure-induced displacement) as the

anteroposterior pressure gradient is far less than that in the idealised case. The effect of passive stiffening

resulting from fibre stretch due to gravitational loading can be observed during nasal inhalation. The more

upright the posture and greater the negative pressure, the more significant the load-induced displacement is;

whilst in the supine position, minimal anterior movement occurs as the epiglottal pressure drops.

Evaluating this resistance against loads using the neural model results a qualitatively similar prediction to

that shown in section 11.2.2 for the dynamic case. Figure 13.3 illustrates the difference in GG response for

the two postural extremes. Qualitatively, the response is similar in that the muscle activity appears to be

increasing proportionally with a decrease in epiglottal pressure. The amount of contractile effort required by

the GGp depends on the anteroposterior pressure gradient, while the GGm has a similar response for both

breathing mechanisms as the pressure developed on the superior surface of the tongue is similar.

Orientation remains a significant factor in determining amount of muscle activity required to resist motion.

The gradient of the muscle response with changing pressure appears to be the same for both the upright and

supine postures. For the supine case, the predicted response appears to oscillate severely around an ideal

line of response. This larger error at higher FFMR values can be attributed to a larger T s
0 being employed,

resulting in greater oscillations around the solution during the evolution process, thus increasing uncertainty

in the result. Furthermore, the GA appears more sensitive to the choice of energy-minimisation parameter in

the static case than for the dynamic one; further evaluation of a more appropriate choice for the weighting

factors is necessary.
2 The average pressure distributions between the CFD-derived data and the approximated configurations have a great similarity. A

determination and comparison of the centre-of-pressure of each surface and computation of the generated force is required to come

to a more conclusive determination on the accuracy of the simplified representation of the pressure load. This task has, however,

not been performed.
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(b) GGm

Figure 13.3: Response of the GG to the quasi-statically applied gravitational and pressure load. It has already

been established that the muscle response is proportional to the angle of incline, therefore only

the limits are depicted in this figure.

Compared to the dynamic case with the approximated pressure distribution, the zero-pressure crossing-

points are similar. The GGp also demonstrates similar characteristics when comparing the response under

conditions of oral and nasal inhalation. However, the difference in pressure distribution, coupled with rate-

effects and the use of the unoptimised model result in significant discrepancies in the magnitudes of the

predicted GGp FFMR. The response of the GGm during oral inhalation compared very well between the

dynamic and static cases, but that of nasal inhalation differed significantly in that a greater contraction has

been predicted in the static scenario. It should be noted that the results shown in section 11.2.2 do not incor-

porate any energy minimisation requirement, and are thus overestimates of that which would be obtained

with comparable energetic qualities. This would further influence the outcome of the neural model, as the

effective use of smaller muscles would be preferred over large ones. This may explain the prediction that the

GGm would be more active than the GGp during nasal inhalation, as it is less voluminous than the GGp and

serves a duel role in position maintenance.

13.1.1 Analytical model of static muscle response for oral inhalation

Performing a similar analysis for oral inhalation under different postures, a collection of data representing

the likely response of the GG constituents was obtained. Figure 13.4 depicts the results of this study. Inspired

by the response shown in [111] and following from the linear function presented in equation 10.1, regression

lines that were a linear function of the epiglottal pressure, were fitted to predict the response of each muscle

group. The predicted activity was approximated3 by the set of curves given by

FFMR pp, γq :“
`
c0 ` c1γ ` c2γ

2
˘

loooooooooomoooooooooon
Gravity shift

` pm0 ` m1γq plooooooomooooooon
Pressure response

(13.1)

which accounted for their nonlinear dependence on gravitational orientation with no airway-induced load.

Furthermore, as the response was observed to stiffen marginally with decreasing inclination angle, it was

coupled with the angle cosine. The coefficients for each muscle, determined with the use of evolutionary

algorithms [318], are given in table 13.1.

3 The coefficient of determination for the GGp and GGm predictions were R2 “ 0.92 and R2 “ 0.96 respectively.
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Figure 13.4: Response of the GG to the quasi-statically applied pressure load under differing postures. The

overall trend is a linear increase in contractile activity as the epiglottal pressure decreases. How-

ever, the accuracy of the predicted response is less than desired.

Table 13.1: Analytical model of tongue muscle control during quasi-static oral respiration: Coefficients for

FFMR.

Muscle

Gravity factor Pressure response

Coefficient c0 c1 c2 m0 m1

Scale 10
´3

10
´3

10
´6

10
´6

10
´6

GGm 0.096 9.83 0.175 6.56 0.206

GGp 6.73 0.634 -32.99 3.74 1.65

Overall, these trends are qualitatively similar to that described by Huang et al. [111], which assumed a linear

dependence between the airway pressure and GG activation. This demonstrates that the neural model has

merit as a valid mechanism of producing and extracting the trends of muscle response under loading sce-

narios. The results presented here later will be used as a basis for comparison for further models developed

from the dynamic simulations using the neural model.

13.2 Quantification of muscle response during time-dependent, idealised

loading

In order to fully quantify the tongue response during breathing, oral inspiration was simulated when in

different postures. This case has already been shown to provide the largest anteroposterior pressure gradient,

thereby resulting in the most dynamic response. The loading cycle was governed by the spatial and temporal

functions given in equations 8.9 and 8.11. 3.5 full inhalation and exhalation cycles (resulting in 3 full cycles

of viable data, discarding the lead-in data obtained in the first cycle) were represented. A nominal airway

pressure of 500Pa was chosen, resulting in a peak-to-peak epiglottal pressure difference of 1000Pa. Four

different loading rates were tested as the period T of each cycle was reduced in even steps from 2.5s to

1s. The split between the optimisation function weights was chosen as t0.7, 0.3u, the former applied to the

displacement function.
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Due to the optimisation of all model parameters, the predicted response of the muscles is less oscillatory than

presented previously. This is demonstrated when comparing an example of the new results shown in fig-

ure 13.5 to those given in figure 11.2. As the exhalation process has also been simulated, the GG deactivation

in this regime is also captured.
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(a) Upright orientation
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(b) Supine orientation

Figure 13.5: An example of the predicted muscle response to changing gravitational orientation and airway

pressure during oral respiration using the optimised neural model.

In the upright position, all constituent parts of the GG fully deactivate during exhalation and other muscles

regulate its position. The TV is utilised to prevent lateral extension due to the contraction of the GG con-

stituents. Contraction of the SL and SG, with peak FFMR values of the same order of magnitude as that of

the GG, are required to prevent depression and anterior motion of the tongue. It is observed that activation

of the SL occurs first as the negative airway pressure is reduced, and subsequently increases again during ex-

halation. The HG is also used to depress the rear of the tongue during exhalation, opposing the lifting effect

of the SG. Other muscles, such as the MH, DG, IL and GH are predicted to provide minor roles in controlling

the tongue in this gravitational configuration.

However, at reclined configurations many of these muscles are not required as the gravitational forces pulling

the tongue anteriorly are not overcome. In the supine configuration, the GGp nearly completely deactivates

during exhalation, while the GGm remains active. As previously discussed, the GGm is clearly used to

moderate tongue position and resist gravitational forces that try to raise the tongue towards the palate at

high angles of reclination, while the GGp is more directly correlated to the epiglottal pressure. The TV, SL

and HG contract when the airway pressure reduces but relax during exhalation. The other muscle groups

produce negligible contraction during both inhalation and exhalation, with peaks of the IL and GGa observed

at maximal exhalation pressures and are orders of magnitude less than the peak GGm response.

In both cases, the effect of the decay parameter τF is prevalent with the deactivation rate of the muscles as the

breathing state changes limited by this value. Furthermore, work-minimisation has reduced the peak FFMR

value attained for the GGp by 20% when compared to that shown in figure 11.2b. However, the average

response remains consistent with the data depicted in figure 11.6.

Figure 13.6 depicts the spatially non-homogeneous fc values for fibres distributed throughout the GG at

peak negative airway pressure for two gravitational orientations. It is observed that the regions of the GG
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that contract most effectively and produce the greatest fibre tension are at the root near the mandible and

in the region of the tongue surface. This is due to the fL
c relationship and that the fibres in these regions

experience a lower reduction in fibre length as the muscle contracts, thus working near optimally in terms of

their length relationship. In the former case, this is due to the constraint imposed by the mandible, while the

latter is due local deformation caused by contraction of other muscles such as the TV.

(a) Upright orientation (b) Supine orientation

Figure 13.6: Non-uniform local fibre contractile function values (equation 6.11) shown for the GG (sagittal

view) at pepi “ ´500Pa. Independent of gravitational orientation, muscle fibres at the central

portions of the GGm and GGp are less effective force generators than those located at the tongue

surface or near the mandible. The GGa has a relatively low activity in comparison to the GGm

and GGp.

However, as shown in figure 13.7, it is the core of GG in which the greatest contractile stresses are generated.

Even though figure 13.6 suggests that the contractile elements function more effectively near the surface of the

tongue, the volume fraction of fibres is lower here than in the central region. The constraint of the mandible

results in the generation of large hydrostatic stresses at root of GG. Overall, the stresses generated at peak

inhalation pressure in the supine orientation are approximately triple in magnitude than those generated

in the upright position at peak negative airway pressure, and the contractile stresses produced in the GG

double.

As depicted in figure 13.8, the result of the greater contractile stresses is that the central volume of the tongue

experiences the greatest principal strains. The tissue in the central region of the GGp experiences up to 25%

strain due to the action of the GGp, while the tissue near the tongue surface tends to deflect with little result-

ing strain. The large strains measured at the mandible and hyoid-tongue interface are due to a combination of

the restriction of movement in this region and computational error resulting from the coarse approximation

of the solution in this region.

For the sake of completeness, figure 13.9 is presented to illustrate the muscle response under the approx-

imated loading conditions that represent nasal respiration in the supine position. When compared to fig-

ure 13.5b, it is clear that the pressure loads are such that the muscle input necessary to balance them is much

less than that for oral respiration. These results are consistent with those detailed in section 11.2.2 and those
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(a) Upright orientation, pepi “ 0Pa (b) Upright orientation, pepi “ ´500Pa

(c) Supine orientation, pepi “ 0Pa (d) Supine orientation, pepi “ ´500Pa

Figure 13.7: Element-average maximum principal stress depicted on the midsagittal plane of the tongue.

Stresses are induced in the tongue due to gravitational and pressure forces (oral inhalation), as

well as muscle activation. They are concentrated at the the mandible where movement of the

muscle tissue is most restricted, as well as in the central volume where the contractile stresses

generated by the GG is greatest.

observed in figure 13.3. However, in the upright case (not shown), both the gravitational and pressure forces

are very low in magnitude and therefore the muscles require negligible activation for position control. This

differs to the response for the pressure distribution obtained from CFD analysis, which exhibited a measur-

able response in the GGm and GGp.
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(a) Upright orientation (b) Supine orientation

Figure 13.8: Element-average maximum principal strain depicted on the midsagittal plane of the tongue at

pepi “ ´500Pa. Strains are greatest in the central volume of the tongue where the compliant

tissue deforms readily due to the generation of large contractile forces in the GG.
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Figure 13.9: Predicted muscle response to changing airway pressure during nasal respiration in the supine

orientation using optimised neural model.

13.2.1 Analytical model of dynamic muscle response

For each muscle M, we present an approximate analytical model of the muscle response which incorporates

the environmental influences that have been shown to significantly influence their behaviour. To achieve this,

a trial function FFMR˚ is defined for the physical parameters present at time t. The resulting FFMR value is

chosen to remain within physical limits

FFMR “ max
“
0, FFMR˚

‰
with

FFMR˚ pp, 9p, γ, T q :“ εMR

“
FFMRave pp, γ, T q ` FFMRhyst p 9p, γ, T q

‰
.

(13.2)
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It is assumed that the response can be decomposed into a rate-independent mean component and a hysteresis

component that incorporates the rate-effects of loading. The former term would represent the limiting value

if the time taken to attain the specified epiglottal pressure was infinitely long. The parameter εMR was intro-

duced as a mechanism to modify the ideal response, allowing the simulation of reduced muscle activation

during the sleep state.

To motivate the description of these two functions, consider figure 13.10 which presents data for the GGm

captured in one load cycle for two different gravitational configurations.
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Figure 13.10: Raw FFMR data extracted for a single breathing cycle for the GGm. The response has been

decomposed into the four distinct components of the breathing cycle, where the pressure and

pressure-rates change signs. The arrows indicate the path of changing contraction intensity

during inhalation (red) and exhalation (blue).

From the figures (and results not presented here), we observe the following:

• The muscle response is nonlinear with respect to pressure; however, a component of this nonlinear-

ity may be due to rate-effects. A consideration of additional results leads to the conclusion that the

response is also nonlinear with respect to inclination angle.

• There exists a different response during inhalation and exhalation. This is further affected by the grav-

itational orientation.

• The response exhibits a hysteresis effect during loading and unloading. In some muscles, this hysteresis

is significant (for example, the peak difference in FFMR at a specified pressure was measured at 22% of

the response range in figure 13.10b).

• In general, the cyclic behaviour of the hysteresis response is clockwise, with the measured FFMR greater

when the negative pressure rate is positive (i.e. epiglottal pressure is decreasing) than when it is nega-

tive. This is due to the force-velocity relationship of active muscular tissue: During muscle relaxation

(experienced when 9p ă 0 for the GG), the contractile element extends while the opposite occurs during

active contraction. For a fixed CE length and α, the fV
c relationship dictates that the generated con-

tractile force is significantly greater during elongation than contraction. Therefore, the FFMR can be

reduced during relaxation, with the result that the muscle generates the same overall contractile force
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as required during a period of active contraction. The change in directionality observed in figure 13.10a

may be non-physical and attributed to the choice of τF . This is supported by the observation that the

GG activation does not decrease to zero when the load is removed.

The contraction-relaxation effect on the force-velocity relationship captured in the Hill-model is depicted

for the GG in figure 13.11. Here it is observed that the fibres that are undergoing extension have a higher

fV
c value than those actively contracting. In this state, the muscle is a more efficient force-generator due to

various physiological reasons discussed in section 2.5.2.3. Therefore, the required level of activation (or, in

this case, the FFMR) to overcome a set load is less during muscle relaxation (i.e. when the load is decreasing).

(a) GG is contracting when the negative airway pressure is in-

creasing ( 9p ą 0).

(b) GG is relaxing when the negative airway pressure is de-

creasing ( 9p ă 0).

Figure 13.11: Force-velocity function values (equation 6.13) in the Hill-element of fibres of the GG during

inhalation and exhalation. The airway pressure is fixed at at pepi “ ´250Pa in both cases, but

the pressure rates differ in sign.

Following from the linear functions presented in equations 10.1 and 13.1, we define a polynomial function

to describe the relationship between the mean response of each muscle group and the negative epiglottal

pressure p as

FFMRave pp, γ, T q :“ pc0 ` c1γ ` c2γ
p0qloooooooooomoooooooooon

Gravity shift

`
`
m0 ` m1p ` m2γ ` m3γp ` m4γT

´1
˘
ploooooooooooooooooooooooooomoooooooooooooooooooooooooon

Average value

. (13.3)

This function is applied separately to the positive and negative pressure regimes, with different coefficients

determined for each region of the applied pressure spectrum. The first set of terms shift the zero-pressure

FFMR value according to the angle of incline. The second set of terms defines the gradient of the p ´ FFMR

relationship. In contrast to equation 10.1, this term is quadratic in p and linear in γ. The necessity for higher-

order pressure terms can be inferred by observing in figure 13.10 that the gradient of the response is not

equal at p “ tpmin, 0, pmaxu, where the effects of change in pressure rates have been negated. Furthermore,

the stiffness of the response is heavily influenced by the reclination angle4. A slight overall stiffening in the

4 Overall, only three parameters define the response in the upright position when γ “ 0. The other parameters are used to modify

this curve to produce the desired response in other gravitational configurations.
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average response for various cycle periods T was observed and accounted for5.

To supplement equation 13.3, a model to capture the rate-induced hysteresis has been produced. As a func-

tion of the angle of incline and rate-of-change of negative epiglottal pressure, equation 13.4 is used to produce

a perturbation from the rate-independent response that is noticeable in figure 13.10b. As there is no hystere-

sis demonstrated in quasi-static cases, the function vanishes when the pressure-rate is zero. In turn, this

forces the magnitude of the perturbation at p “ tpmin, 0, pmaxu to be zero, as these are stationary points in the

assumed pressure loading path6. The function, defined by

FFMRhyst p 9p, γ, T q :“
`
b0 ` b1γ ` b2γ

2
˘

loooooooooomoooooooooon
Gravity factor

pn0 ` n1 9p ` n2γ ` n3γ 9pqT 0.75
9ploooooooooooooooooooomoooooooooooooooooooon

Hysteresis

(13.4)

is quadratic in pressure-rate and cubic with respect to the angle cosine. The terms in the first bracket are

primarily utilised to change the direction of the hysteresis from clockwise to anti-clockwise dependent under

specific gravitation orientations. The second term produces the majority of the perturbation, observed to be

greatest in the supine orientation and at high pressure-rates. The magnitude of the hysteresis also appeared

to be greater at lower cycle frequencies. As with the pressure-dependent function, this function also has two

separate sets of coefficients valid for the two pressure regimes are determined. It is assumed that with a

decrease in the FFMR-pressure gradient, there exists a proportionate reduction in the response hysteresis.

With reference to the discussion in section 2.6, there are two different mechanisms leading to muscle atonia

during sleep, and their method of incorporation into the model is accounted for in the following paragraphs.

Firstly we define the general factor used to reduce the muscle activity as

εMR “ 1 ´
R

100
(13.5)

where R represents a percentage reduction in the muscle response to the pressure load. This deactivation

function, chosen a priori to simulate in particular the response of the airway dilators during sleep or the

onset of OSA [308, 231], assumes that the muscles of the tongue no longer continue to respond ideally to the

gravitational nor pressure forces. This definition is aligned with the sleep response described in [111, fig.

4], where both the zero and non-zero muscle activities are less than those used when awake. According to

[111, 113, 73], a reduction in tonic and phasic muscle activity in the range of 15%-30% has been measured

during sleep.

The second mechanism captured is that the maximum rate-independent FFMR may be limited for certain

muscles. This is described through the prescription of the additional constraint

FFMRave “ min rFFMRave ppq , FFMRave ppthrqs . (13.6)

This effectively restricts the degree of muscle contraction developed at low airway pressures, which mimics

to the response depicted by [111], with the baseline threshold negative epiglottal pressure chosen as pthr “

450Pa. Beyond this threshold, these muscles are assumed no longer to respond to the falling airway pressure

(and thus produces a loss of reflexive response) and, in order to ensure a smooth contractile response, only

rate-based effects will result in a change in their FFMR.

5 Although derived from a measurable quantity, this term cannot be further motivated as the frequency of the load cycle (if it is at all

periodic) cannot be known a priori.
6 Using t˚, the fraction of the cycle period that has elapsed, it is possible to artificially incorporate zero-pressure hysteresis into the

model. This, however, voids the assertion that all significant contributors to the response should relate to physical parameters and

that quasi-static loading should result in the average value being obtained.
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Tables 13.2 and 13.3 list the coefficients determined for the most significant muscle groups that were active

during simulations. Evolutionary algorithms [318] were utilised to solve for the coefficients of the GGm,

GGp and TV using only data obtained for nominal inhalation pressures of 500Pa. The resulting predictive

functions reproduce the behaviour to a moderate-to-high degree of accuracy7. These coefficients have also

been validated by checking their functionality outside the tested range of p and 9p, with physically plausible

results still obtained at pnom “ 1000Pa and double the pressure-rate serving as verification that the analyt-

ical model with the fitted parameters functions sufficiently well for a spectrum of loading conditions. Fig-

ure 13.12 demonstrates the overall accuracy of the analytical model in capturing the gross and rate-dependent

behaviour of the response of the most active GG components.

Table 13.2: Analytical model of tongue muscle control during transient oral respiration: Coefficients for

FFMRave.

Muscle

Gravity shift Average value

Coefficient c0 c1 c2 p0 m0 m1 m2 m3 m4

Scale 10
´3

10
´3

10
´3 1 10

´6
10

´9
10

´6
10

´9
10

´6

GGm
p ě 0

0.5 5 6.5 4.25
5.5 5 5.5 -6 2

p ă 0 2.5 1.5 12 4 -2

GGp
p ě 0

0.5 9.5 -2 2
6 5 13 -10.5 2

p ă 0 3 1.5 16 8 -2

TV
p ě 0

0.3 4 -1.4 2
2 1.25 2 -3 1.5

p ă 0 1.25 0.5 3.25 1.75 0.001

SL
p ě 0

1 1.1 -0.35 2
-0.01 -0.25 1.5 -0.25 0.5

p ă 0 -2.3 0.2 4 0 0.25

HG
p ě 0

0.3 -0.1 1.2 12
-0.6 0 0.55 0 0

p ă 0 -2.5 0 2.5 0 0

MH
p ě 0

0.4 1.85 -2.5 3
-0.35 0 -0.35 0 0

p ă 0 -0.25 0 -0.25 0 0

SG
p ě 0

0.3 -0.2 -0.15 2
-0.6 0 0.6 0 0

p ă 0 -4 0 4.5 0 0

However. it was determined that the model requires additional coefficients to fully realise the response of

the SL, HG, MH and SG. The manually determined coefficients presented for these muscles represents only

an approximation that captures their gross response. Furthermore, the zero-pressure hysteresis for the SL

was large enough to diminish the accuracy of the model significantly, but no physically motivated terms

can be introduced to the model to account for this. In most instances, the magnitude of their contraction is

significantly lower than that produced by the GG constituents so it is assumed the error in the model will not

produce significant deviations from the scenarios from which coefficients were determined.

Figures 13.13 to 13.15 present the response for each of the specified muscle groups for a range of inclinations

and a cycle period of 2.5s. With reference to the experimental works of Remmers et al. [231], Malhotra et al.

7 In this instance, the statistical significance of the analytical model was analysed through the calculation of the coefficient of deter-

mination. Observation in the data trends, coupled with the computation of the statistical significance of the analytical models, truly

motivated the requirement to capture the hysteresis effects, as the average value model alone produced sub-standard results on its

own for certain muscle groups. The addition of FFMRhyst increased the minimum coefficient of determination from R2 “ 0.89 to

R2 “ 0.94 for the GGm, R2 “ 0.90 to R2 “ 0.94 for the GGp. An average value of R2 “ 0.94 was obtained for the TV and a poor

R2 “ 0.68 for the SL for which the result trends are not resolved in full.
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Table 13.3: Analytical model of tongue muscle control during transient oral respiration: Coefficients for

FFMRhyst.

Muscle

Gravity factor Hysteresis

Coefficient b0 b1 b2 n0 n1 n2 n3

Scale 1 1 1 10
´9

10
´12

10
´9

10
´12

GGm
p ě 0

-1 5.33 -3.33
125 10 150 25

p ă 0 125 -10 125 -25

GGp
p ě 0

-1 5.33 -3.33
125 10 150 25

p ă 0 125 -10 125 -25

SL
p ě 0

1 0 0
-150 7.5 75 2.5

p ă 0 -75 -1 -25 -2.5
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Figure 13.12: Validation of transient analytical model accuracy for the GG. Overlaid on a weighted average

of raw and smoothed FFMR datasets extracted from the neural model is the solid lines which

indicate the response predicted by the analytical model. It is important to note that the direc-

tionality of the hysteresis, not shown in this picture, is also successfully captured by the model.

[167] and Akahoshi et al. [3] (an extract of which is shown in figure 2.17), and the model of Huang et al.

[111] depicted in figure 2.18, the neural and analytical models capture the response of the GG very well, with

the trends indicated by both sources being mimicked in the response illustrated in figure 13.13. The most

obvious correlation between this data and that obtained experimentally is that the activity of the GGm and

the GGp increases significantly as the airway pressure drops. Furthermore, the zero-pressure activity in the

supine state is non-zero in the experimental and this computationally derived data. The clockwise hysteresis

observed in the predicted response of the neural model at negative airway pressures has been observed in

the experimental analysis of Akahoshi et al. [3] (and is most prevalent shown in [3, fig. 5b]) and [231, fig.

8]. Furthermore, this data and the wakeful-state model used by Huang et al. [111] depict a reduction in the

gradient of the response at greater negative airway pressures. This trend has also been captured in the model

at high angles of reclination, which corresponds to the conditions under which the data was collected by

Akahoshi et al. [3].

The poor correlation between the magnitude of the FFMR values and EMG values presented in the literature
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Figure 13.13: Response of the GG constituents as predicted by the analytical model for oral breathing. The

thick solid lines indicate the overall response, while the rate-independent value produced from

equation 13.3 is drawn as a thin line. Note that at an inclination of 75˝, the hysteresis contribu-

tion is practically zero. This was also observed in the data obtained in the simulations and is

near the inclination at which the response loop changes from clockwise to anti-clockwise.

[165, 261, 221] can be attributed to the choice of material parameters for the muscle model (specifically Tmax
0 ,

but also variations of material constitution amongst individuals), the modelled physical conditions and the

interpretation of the EMG scale itself. However, that the trends have been captured extends confidence that

the model approximates the function of the GG for the case of oral breathing.

From a comparison between figure 13.14a and figure 13.13c it is deduced that the TV and GGp activity are

closely linked. Although the GGm and GGp both result in lateral expansion of the tongue, the TV has a

larger proportion of its volume distributed in regions of the GGp than the GGm and is therefore better suited

to oppose the motion caused by the GGp than the GGm. Negligible hysteresis was predicted by the neural

model, and thus was not accounted in the analytical model.

The response of the SL varied greatly with the environmental conditions. As illustrated in figure 13.14,

the gravitational orientation dictated whether this muscle is most critical during inhalation or exhalation.

Considering the extreme cases, it can be determined why the SL is needed to prevent the deflection of the
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Figure 13.14: Response of the TV and SL, both located near the superior surface of the tongue, as predicted

by the analytical model for oral breathing.

tongue tip towards the mandible. The SL is most active during inhalation in the supine condition as then the

GG contracts strongly. However, in the upright condition it is required to contract during exhalation when

the loading forces act to produce a similar effect. The zero-pressure hysteresis associated with the SL was

very large and not accounted for, leading to the poor correlation mentioned in footnote 7 on page 205.

Figure 13.15 illustrates the activity in the HG, MH and SG. The general trend for these muscles is that they are

required to produce a greater contractile force during exhalation than inhalation. When a positive pressure

is produced in the airway, the load is such that the tongue is pushed anteriorly. The SG is used to prevent

this, but also leads to a resulting upwards force on the rear surface of the tongue. The action of the HG

is therefore necessary to prevent lifting of the tongue posterior. The MH further assists in moderating the

amount of lift on the tongue body. A further point to note is that the response of the HG and MH has a more

complex relationship with the gravitational orientation than observed in other muscles. The MH shows most

activity at 60˝ above the horizontal, while the HG demonstrates a very different response below 45˝. This

could be attributed to the energy-minimisation requirement (see section 7.3.2) and the interaction between

these muscles and other muscle groups not detailed here.

With regard to the frequency of inspiration, figure 13.16 illustrates the stiffening of the GG response as the

period of the breathing cycle is reduced. The phenomenon appears relatively minor, but capturing its effect

for all postures improved the statistical accuracy of the model considerably.

13.3 Dynamic vs quasi-static analysis: The role of load history and the

rate-dependence of muscular tissue

It has been demonstrated that it is possible to gain insight into the functioning and response of the tongue

using two techniques, both of which have certain advantages and disadvantages in terms of simplicity and

computational expense. A choice must now be made as to which methodology will be utilised to simulate

the state of sleep. To do so, a comparison between results attained by the two methods is first made and an

analysis of the conclusions that can be drawn from them is presented.
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Figure 13.15: Response of the SG, HG and MH as predicted by the analytical model for oral breathing.
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Figure 13.16: Change in activity of the GG in the supine orientation due to reduced breathing cycle period.

Firstly, a reminder of the fundamental differences in the simulation philosophies: the time-dependent load

has been a simplified and assumed field, while the static-load is determined from the final pressure field

extracted from the CFD data. The muscle and neural models, both of which have been developed for dynamic

situations, have been applied directly to the quasi-static case with only the removal of the rate-dependent
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response of the muscle. To arrive at a decision, the collective effect of the boundary conditions and control

algorithm result must be considered.

In section 13.1 and section 13.2, it has been shown that the neural model produces comparable results be-

tween the two methodologies. This is a surprising result, given the significantly different passive tongue

movement due to the ideal and CFD derived pressure fields. With respect to the functioning of the GGp

and GGm in particular, both of which have been demonstrated to be directly affected by posture and play

the role of airway dilators, comparison between figure 13.4 and figure 13.13 indicate that qualitatively and

quantitatively similar trends are produced. This suggests that the approximated loading distribution used in

the dynamic cases is sufficiently accurate to represent mouth and nasal inhalation. It also demonstrates that

the neural and muscle models can be used successfully in static analysis.

As was noted in section 13.1, the overall accuracy of the control algorithm (in its current form) is less than

desirable while the performance for the dynamic case is adequate. The alternate methodology, with the

current representation of the pressure distributions present in the airway, results in an over-prediction of

the retroglossal displacement in the passive state. However, the dynamic scenario may provide additional

insights in terms of the displacement and muscle contraction histories resulting from the temporally-variable

load. The dynamic methodology, using approximate descriptions of the loading conditions, therefore will be

utilised in section 13.4 to simulate one possible scenario leading to a loss of upper airway patency.

13.4 Induced retroglossal movement due to idealised dynamic loading

during sleep

The analytical model presented in section 13.2.1 has been demonstrated to reproduce a response similar to

that predicted by the neurological control model. Through manipulation of this response, it is now possible

to predict the outcome of changing both anatomical and environmental conditions in conjunction with a sub-

optimal muscle reaction. This allows the simulation of conditions that may lead to sleep disorders. Possible

scenarios that could be investigated include

Neurological response: A reduction in the ability of muscles to resist air and gravitational loads. These may

be caused by a slow adaptation of activity to rapidly changing environmental conditions, or an innate

or developing neuromuscular disability.

Pathophysiological: An increase in adipose tissue content in the muscle requires an adaptation of the mus-

cle response as the material parameters change over time. Suppressed muscle learning may result in

insufficient contractile force, namely that required for the “learned” composition of the tongue, being

utilised.

To simulate these conditions, a similar problem configuration to that used before was utilised. Using the

temporally-dependent model, three full cycles of oral breathing were reproduced. Each cycle of inhalation

and exhalation was considered to be 2.5s in length, and the nominal pressure for the period of exhalation was

initially fixed at pnom “ 500Pa. Other specific changes to each scenario is listed where appropriate.

By modulating the value of εMR (equation 13.5), simulated depression of tongue muscle response to sur-

rounding air-pressure during sleep can be produced. Furthermore, enforcing the relationship given in equa-

tion 13.6 ensures a further limitation of muscle activity at epiglottal pressures of lower than ´450Pa. We
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restrict the usage of these modifications to the airway dilators, and assume that all other muscles function

optimally8.

In the following results, the anteroposterior position of the rear of the tongue, namely the y-component

of the displacement of PC , are measured relative to the solution determined with the optimised response

(figures 13.13 to 13.15) as the baseline. This was done as the displacement solution obtained the analytical

model as a control mechanism, like that when directly using the GA controlled neural model, is small but

non-trivial.

13.4.1 Posture and the depression of genioglossal response to airway pressure

Assuming the worst-case scenario in terms of response depression εMR which may arise during sleep, fig-

ure 13.17 gives an indication to the greatly altered genioglossal response for nominal inhalation pressures

near and well over the threshold pressure stated in [111]. Increasing the maximum negative airway pressure

from 500Pa to 1000Pa for a fixed inhalation period results in an increase in the amount of hysteresis induced

in the muscle response. More pertinent is the activity at pressures lower than the threshold pressure. Al-

though the rate-effects result in a differing response during periods of pressure increase and decrease, the

slope of the average response at a set pressure below the threshold value is now zero. Comparison with

figure 13.13 demonstrates that the dilators have been severely compromised and that muscle activation is

substantially less than that required to sustain position control under airway loads. Furthermore, the zero-

pressure response is also reduced, suggesting that movement of the tongue under gravitational loads may be

expected.

The two loading cases presented here are interpreted in the following manner: In the first, setting

pnom “ 500Pa for the inhalation cycle in conjunction with a non-trivial value of εMR simulates destimula-

tion of components of the GG without sufficient movement to result in a total loss of airway patency. The

second scenario, where pnom “ 1000Pa for the inhalation cycle, reduced activation is assumed to lead to a

partial or total blockage of the retroglossal space or contribute to a loss of patency in the lower pharynx

(leading to very low pressures). This could be related to the increased adipose deposits in, or movement of,

the retroglossal and pharyngeal tissues, resulting in a decreased normal pharyngeal CSA.

The anteroposterior position of the rear of the tongue which changes due to partial deactivation of the ge-

nioglossus is shown in figures 13.18 and 13.19. For the two pressure cases, the result of sub-optimal response

of the GGp and GGm, and the GGp alone are evaluated. The latter case was tested as the GGp has been

previously shown to be primarily responsible for the control of the anteroposterior position of PC .

The first case to be evaluated is that when the maximal negative airway pressure approaches and only slightly

exceeds the threshold pressure. As shown in figure 13.18, a change in posture and lowering of the airway

pressure resulted in a rearward movement of the tongue. Significant motion solely due to the influence of

body forces is predicted in the supine orientation, especially when both GG components are understimulated.

In all cases, loss of the effective functioning of both the GGm and GGp results in much larger motions than

the GGp alone. In the supine case, at maximal applied pressure an extra 1mm rearward movement can be

attributed to the loss of control of the GGm.

A decreasing angle of incline resulted in greater displacements due to the increased posterior component of

8 Up to this point, no mention of sleep-induced atonia in the other muscles of the tongue had been found in the literature.
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(a) GGp with pnom “ 500Pa

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Negative pressure rPas

F
F
M
R

r%
of

m
ax

s

Supine (0˝) 30˝ Incline 45˝ Incline
60˝ Incline 75˝ Incline Upright (90˝)

(b) GGm with pnom “ 500Pa
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(c) GGp with pnom “ 1000Pa

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Negative pressure rPas

F
F
M
R

r%
of

m
ax

s

Supine (0˝) 30˝ Incline 45˝ Incline
60˝ Incline 75˝ Incline Upright (90˝)

(d) GGm with pnom “ 1000Pa

Figure 13.17: FFMR for muscles experiencing atonia and loss of reflexive action of the lowing air-pressure

In each case, 30% atonia (deactivation) is achieved by setting R “ 30 in equation 13.5. The

threshold pressure, prescribed as pthr “ 450Pa, for limitation of the average muscle response

is marked by a dashed line. Comparison of figure 13.17a with figure 13.17c, and figure 13.17b

with figure 13.17d, reveals the pressure-rate effects on the prescribed FFMR.

gravitational loading. However, the average gradient of the pressure-displacement curve is greater in mag-

nitude for the upright case than of the supine case. This was due to increased muscle tone and the resulting

tissue stiffening that occurs as increased gravitational resistance is required. There exists a noticeable change

in displacement gradient for high inclinations once threshold pressure has been exceeded. Conceptually, this

may be sufficient enough to induce a marked change in the airway pressure profile and result in a loss a

patency.

A number of secondary phenomena also can be noted. Due to the general reduction in tonic activity, the

zero-load displacement increases as the orientation moves towards the supine. The displacement hysteresis

occurs in clockwise manner indicating that during relaxation movement of the tongue (particularly posterior

displacement) increases. This effect is marginal in the supine case, but becomes more significant as the incli-

nation angle increases. Furthermore, for the case of only having GGp atonia, a convergence of displacement

histories of PC occurs at inclinations less than 60˝.
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(a) GGp and GGm
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(b) GGp only

Figure 13.18: Anterior displacement of point PC during partial deactivation of GG with changing pos-

ture. Minimum epiglottal pressure produced with pnom “ 500Pa, while a pressure threshold

pthr “ 450Pa and 30% atonia (R “ 30) are assumed. The slight step in the displacement curves

at higher pressures is due to the changing number of Uzawa iterations used to enforce incom-

pressibility.

Once the threshold pressure is exceeded, large motions (between 2 ´ 3 times that predicted for a lower nom-

inal pressure) are predicted at maximal load. Figure 13.19 indicates that the predicted tongue movement is

dramatically altered by the posture and an increased pressure loading. There exists a significant reduction

in position control and resistance to the effects of increased airway loads once threshold pressure is crossed.

In all cases, the pressure-displacement slope is altered significantly after this point. The overall result of this

motion would be a significant reduction in pharyngeal CSA9. Loss of governance of the GGp alone results in

a similar behaviour of the tongue, although again the displacements are smaller overall.

Counter-intuitively, increasing the inclination does not necessarily result in an increase in airway patency.

Tissue is far more compliant in upright position due to decreased muscle tone, thereby leading to greater

displacements under pressure load. Due to the lessened tone, the resulting displacement at maximal load is

greater in the upright position than the supine orientation.

The movement recorded during the transition from inhalation to exhalation and vice versa is significantly

different. Hysteresis effects are large, and natural recovery of airway patency is weakened by the viscoelastic

behaviour of the tissue. Interestingly, this leads to the maximum displacement of the tongue occurring at

an epiglottal pressure slightly greater than the minimum pressure. Rate-effects persist as the zero-pressure

point is reached. There also exists a convergent point at 850Pa where the load-based displacement is identical

during the period of pressure drop.

13.4.2 Modulation of pressure threshold governing loss of reflexive muscle response

during sleep

The pressure at which a loss of reflexive mechanisms occur is certainly gender specific [111], but also has a

wide spectrum of other aetiologies. One can speculate that various factors, such as neurological disorders and

9 Recall from section 8.8.2 that the anteroposterior diameter of the pharynx is approximately 17mm.
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(a) GGp and GGm
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Figure 13.19: Anterior displacement of point PC during partial deactivation of GG with changing pos-

ture. Minimum epiglottal pressure produced with pnom “ 1000Pa, while a pressure threshold

pthr “ 450Pa and 30% atonia (R “ 30) are assumed. The difference in displacement magnitude

between the intersection points of a vertical line with the displacement history quantifies the

displacement hysteresis in the loading cycle at a set pressure.

changing physiology, could contribute to an increase of this threshold value in comparison to that measured

in healthy individuals.

In the following scenarios, the baseline value of pthr is increased, with the expected result being that the

resistance to movement is also increased. The resulting muscle activity for the primary airway dilators is

shown in figure 13.20. As expected, the response of the GG components below pepi “ ´450Pa is identical in

all cases, but as the threshold pressure is exceeded the muscle activity levels out. The result is that between

the threshold and peak pressure, the amount of contractile force generated within these muscles is severely

reduced as the threshold pressure is increased.
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Figure 13.20: FFMR for partially deactivated muscles at varying values for the pressure modulation threshold

pthr. Minimum epiglottal pressure produced with pnom “ 1000Pa, while 30% atonia (R “ 30) is

assumed.
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As a percentage of the FFMR produced at peak pressure in the wakeful state, this mechanism of muscle de-

activation is far more severe when the body is situated in the upright posture than the supine one. Table 13.4

demonstrates that, in the worst-case, a loss of up to 75% of dilator activity may be induced during sleep in

the upright posture, while the equivalent case may limited to 50% when the body is in the supine orientation.

Table 13.4: The influence of sleep reflex loss pressure threshold on GG contraction strength. Tabulated is the

difference of GG FFMR at peak pressure with respect to that produced during the awake state.

(a) GGp

pthr Upright Supine

450Pa ´74.4% ´50.4%

600Pa ´64.1% ´43.8%

700Pa ´56.5% ´39.8%

800Pa ´48.3% ´36.2%

900Pa ´39.4% ´32.9%

(b) GGm

pthr Upright Supine

450Pa ´74.6% ´47.4%

600Pa ´64.4% ´42.5%

700Pa ´56.7% ´39.3%

800Pa ´48.5% ´36.1%

900Pa ´39.5% ´33.0%

For the upright case it is this effect, coupled with the overall minimal muscle tone used to regulate the tongue

position, that results in a large anterior deflection of the tongue once the pressure threshold has been ex-

ceeded. Figures 13.21a and 13.21b indicate that in the period of pressure decrease, up to 4.5mm anterior de-

flection may occur when both dilatory components of the GG are affected. When the GGp alone experiences

atonia, the maximal displacement magnitude post-threshold is reduced to 3mm. In each case, the maximal

anterior displacement and magnitude of the displacement hysteresis measured during pressure drop and

rise is proportional to the threshold pressure. The latter point can be explained by the fact that position re-

covery during the period of pressure normalisation is severely affected by threshold pressure through both

viscoelastic effects and the reduced peak level muscle activity. In summary, the higher the pressure threshold,

the greater the length of time for which the tongue experiences large retroglossal deflection.

However, in contrast to this, for the supine posture the effect that the pressure threshold has on the displace-

ment is significantly reduced due to the overall increased muscle tone. The zero-load displacement is greater

than that of the upright case as the tonic muscle activity is reduced during the sleep state. As was observed

for the upright case, an increase in the pressure threshold does result in a greater anterior deflection of the

tongue, and this is exacerbated by the reduction of activity of the GGm in addition to the GGp. This motion is

limited to only 2mm after the pressure dropped below the threshold value in the worst case, and when only

the GGp experiences atonia this value is only 1.25mm. For pthr between 700Pa and 900Pa, the displacement

histories were quite similar in this orientation when compared to that of previous case where measurable

differences are visible.

13.4.3 Degree of muscle atonia during sleep

Evaluation of the effect of general atonia of the tongue muscles during inspiration was conducted by altering

the value of R in equation 13.5 with pthr remaining at the baseline value. It is indicated in figure 13.22 that

the retroglossal movement of the tongue is most significantly influenced as the angle of recline increases.
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(a) GGp and GGm, upright orientation
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(b) GGp only, upright orientation
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(c) GGp and GGm, supine orientation
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(d) GGp only, supine orientation

Figure 13.21: Anterior displacement of point PC during partial deactivation of GG due to a changing pres-

sure threshold pthr value. Minimum epiglottal pressure produced with pnom “ 1000Pa, while

30% atonia (R “ 30) is assumed.

In the upright posture, the difference in anteroposterior movement at peak pressure between the extreme

cases was 0.75mm when both the GGp and GGm experienced a reduction in muscle activity, while a dif-

ference of 0.5mm was measured when the GGp alone functioned suboptimally. It was also observed that

throughout the inhalation cycle the anterior motion increased marginally as the value of R increased. This

was primarily due to the loss of reflexive mechanisms, but is also partially attributed to the viscoelastic be-

haviour of the muscles. Regardless of the degree of atonia present in the muscles, once the pressure threshold

is exceeded during inhalation, the tongue’s position remains severely compromised for the rest of the inhala-

tion cycle.

When there is no air-induced load and the orientation is changed to that of the supine posture, the increased

atonia compromises the tongue’s ability to resist gravitational forces. When both components of the GG are

affected, the zero-load displacement at the start of the inhalation increases by a margin of 1.5mm, while in the

second case 0.75mm of initial movement can be attributed to this factor. This leads to a marked difference in

the pressure-displacement history and a greatly increased difference in the zero-to-maximum pressure dis-

placement value: 2.25mm and 1.5mm for the two- and one- GG component destimulation cases respectively.

By comparing these two sets of results, eliminating the gravitational effects and ignoring the loss of reflexive

muscle tone, it can be concluded that, regardless of orientation, less than 1mm of additional retroglossal
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(a) GGp and GGm, upright orientation
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(b) GGp only, upright orientation
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(c) GGp and GGm, supine orientation
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(d) GGp only, supine orientation

Figure 13.22: Anterior displacement of point PC during partial deactivation of GG due to a variation of the

degree of muscle atonia. Minimum epiglottal pressure produced with pnom “ 1000Pa, while a

threshold pressure pthr “ 450Pa is assumed.

movement is generated due to the presence of an airway load on the tongue when in a state of reduced

muscle tone. Overall, it can be stated that the loss of muscle tone may certainly lead to increased movement

of the tongue as the angle of incline is reduced.

13.4.4 Delay in muscle response during sleep

Simulation of a neurological deficiency leading to a delayed response of all muscles to an external loading

stimulus can be achieved by altering the pressure value used in equation 13.2. In practice, this means that a

epiglottal pressure p “ p ptq is applied to the tongue surface, while p “ p pt ´ ∆tq is registered and responded

to by the tongue muscles. As it is assumed that such a situation may only arise during sleep, the delayed

response also was coupled with a partial deactivation of the dilator muscles.

Figure 13.23 shows the resulting muscle response as a function of the epiglottal pressure with a sinusoidal

temporal loading pattern. It is quite apparent that even a small delay, of the order of tens of milliseconds,

drastically changes the recorded stimulation history of the dilators. Due to the temporal offset, the portion of

the FFMR curve associated with pressure drop is shifted right with respect to the non-delayed curve, while
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that recorded during a pressure increase is shifted left. The result of this is that for the supine posture each

set of response curves has a clockwise looped shape for the supine orientation with the cross-over point

shifting right as the delay increases. A similar phenomenon may also be seen in the work of Akahoshi et al.

[3] shown previously in figure 2.17, although it appears from this data only very small neural delays may

be appropriate. As the upright posture normally results in an anti-clockwise activation hysteresis curve, a

neural signal delay tends to widen the loop further.
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Figure 13.23: FFMR for partially deactivated GG muscles with a preset delay in the activation with respect to

the applied airway pressure load. Minimum epiglottal pressure produced with pnom “ 1000Pa,

while a threshold pressure pthr “ 450Pa and 30% atonia (R “ 30) are assumed.

As is shown in figure 13.24, the effect that the offset response of the dilators to the applied load has a situation

varied effect on the retroglossal displacement history of the tongue rear surface. The presence of an activation

delay leads to a significantly altered displacement history, particularly at high airway pressures, with the

result that displacement is increased when the pressure-rate is negative. When both components of the

GG experience a delayed neural response, as well as the destimulation associated with sleep, the maximal

resulting rearwards tongue motion appears no larger when the neural delay is large than when there is no

delay at all. However, when only the GGp FFMR is limited at the threshold pressure, the addition of a neural

delay results in a measurably larger posterior deflection. The magnitude of the displacement remains less

than in the case where the functioning of both muscles are compromised.

In the supine orientation, a cross-over point in the displacement-pressure loop is noted when long delays

are present. This signifies that the typical behaviour of less movement during the pressure drop than during

pressure increase is reversed. This is attributed to an increased contraction of the GG as it neurologically reg-

isters lower pressures than those actually experienced by the tongue, which in turn causes a larger contractile

force to be applied thereby partially offsetting the atonia that is present. Conversely, at the inception of the

inspiratory pressure drop the dilators are still responding to the expiratory pressures and thus the tongue

experiences a greater no-load deflection than in the previous case-studies that have been presented.

If the head posture remains upright, the maximal anteroposterior displacement value occurs at minimum

airway pressure while in the supine posture occurs at a higher pressure. In the supine case, the trend is that

the magnitude of the motion produced as the pressure drops is increased due to the increased lag in response

of the GG. For delays in excess of 105ms, the FFMR history no longer appears physiologically plausible.
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(a) Deactivation of GGp and GGm, upright orientation

0 100 200 300 400 500 600 700 800 900 1,000
´5

´4

´3

´2

´1

0

Negative pressure rPas

A
nt
er
io
r
d
is
p
la
ce
m
en
t
m
ag
n
it
u
d
e

rm
m

s

0ms 45ms 75ms 105ms

(b) Deactivation of GGp only, upright orientation
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(c) Deactivation of GGp and GGm, supine orientation
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(d) Deactivation of GGp only, supine orientation

Figure 13.24: Anterior displacement of point PC during partial deactivation of GG with delayed neural re-

sponse of all muscles. Minimum epiglottal pressure produced with pnom “ 1000Pa, while a

threshold pressure pthr “ 450Pa and 30% atonia (R “ 30) are assumed.

In these cases, the maximal posterior movement occurs at significantly higher pressures than the minimal

epiglottal pressure and results in larger displacements than recorded in figures 13.24c and 13.24d.

13.4.5 Increase of non-muscular tissue mass in tongue

Using the analytical control model, it is feasible to simulate soft tissue accumulation in the interstitial space

of the tongue musculature with no subsequent adaption by motor learning. This is achieved by keeping the

coefficients listed in tables 13.2 and 13.3, valid for φf “ 0.7, constant and changing the fibre volume fraction

applied to the physiology. As previously described, this material parameter is specified constant throughout

the tongue and all muscles are affected in terms of the contractile stress that they generate locally. As some

performance degradation is expected in the awake and sleep states, both are evaluated and discussed below.

13.4.5.1 Wakeful state

As was demonstrated in section 11.3.1, the genioglossal activity required to control tongue movement under

both gravitational and pressure loading increases as the fibre volume fraction is reduced. Therefore even
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in the wakeful state when the dilators are most responsive, large retroglossal movement of the tongue is

possible if the increased volume of interstitial tissue is not accounted for.

Figure 13.25a illustrates that, on average, for every 10% by volume of adipose tissue increase, a displace-

ment of 1mm per 1kPa can be expected when orientated in an upright position. In the supine posture, the

performance is further affected by gravitational influences. Again, the overall stiffening of the muscular tis-

sue results in a general resistance to airway loading but the deflection due to gravitational loading alone

is approximately 0.75mm per 10% volume increase of interstitial tissue. However, it was observed that the

resistance to a drop in epiglottal pressure decreases considerably as φf decreases. Rate-effects only appear to

become significant if the difference between the neurologically-apparent and physiological values for the φf

differ greatly.
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(b) Supine orientation

Figure 13.25: Anterior displacement of point PC during wakeful state inhalation due to reduced fibre volume

fraction with GG response prescribed for φf “ 0.7.

13.4.5.2 Sleep state

The addition of reduced contractile force due to soft tissue build-up, in conjunction with the performance

degradation of the GGp and GGm associated with the sleep state, leads to very large rearward movement

when the supine posture is maintained. As can be seen in figure 13.26b, at no load the retroglossal displace-

ment is doubled when the value of φf is decreased from 0.7 to 0.4. At very low pressures up to a further

1.5mm anterior motion can be attributed in the extreme case to the mismatch between muscle stimulation

and interstitial tissue volume.

In contrast, having the head in the upright position leads to far lesser deviation due to soft tissue build-up

alone. At the pressure threshold, for the most extreme case an additional 0.75mm of movement may be

induced while at the minimum airway pressure this value is 1.25mm.

13.5 Summary and discussion of results

Using the knowledge accumulated in producing the parametric study, the parameter-optimised neural model

was used to perform two studies. The first was conducted under quasi-static conditions and using the pres-
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(b) Supine orientation

Figure 13.26: Anterior displacement of point PC during sleep state inhalation due to reduced fibre volume

fraction with GG response prescribed for φf “ 0.7. Minimum epiglottal pressure produced with

pnom “ 1000Pa, while a threshold pressure pthr “ 450Pa and 30% atonia (R “ 30) are assumed.

sure fields generated from the CFD analysis of the HUA. Loading of the passive tongue demonstrated that the

displacement trends resulting from the assumed and CFD pressure distributions were similar. However, the

assumed distribution resulted in an over-prediction of the air-induced movement at a set epiglottal pressure.

Application of the neural model allowed the resolution of the FFMR required by the GG to resist movement

during the wakeful state. The trends in the predicted response were qualitatively similar to those observed in

the temporally-dependent parametric studies. From this, an analytical model, linear in terms of the epiglottal

pressure, was produced and confirmed to be of a similar nature to that described in the literature. However,

the accuracy of the data extracted from the neural model was declared questionable. Ultimately, it was de-

cided that understanding the transient behaviour of the tongue was important and could lead to a deeper

understanding of the tongue’s functioning than static simulations could achieve.

The second study involved the application of the neural model to scenarios in which a temporally-dependent

pressure distribution, incorporating phases of both inhalation and exhalation, was utilised. Due to the com-

plexity and computational expense of the task, the spatial description of the load was approximated with the

knowledge of the general magnitude of the difference in the results under passive conditions. The effective-

ness of the optimised neural model was reexamined under these conditions, and it was demonstrated that

good results, consistent with those observed during the parametric study, were obtained. A deeper evalua-

tion of the macro- and microscopic functioning of the airway dilators under differing loading conditions was

performed.

Using data extracted from 24 independent simulations with a variation in angle of recline and duration of

the breathing cycle, a nine parameter analytical model predicting the approximate response of seven muscle

groups was produced. More specifically, the determined coefficients approximate the optimal activation of

the tongue muscles during the wakeful condition and within a pressure regime consistent with a patent

airway. The model primarily links posture and the epiglottal pressure and its rate of change to the muscle

response. Furthermore, this model accounted for hysteresis effects and incorporated additional parameters

which could simulate the muscle atonia present during sleep. It was validated by comparing the response

predicted at negative pressures, exceeding that for which the parameters were extracted, to those generated

by the neural model under the same conditions.
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The sophisticated analytical model was used to simulate the tongue’s behaviour assuming a variety of con-

ditions and pathologies, with an emphasis on functioning during the sleep-state. Posture, the fraction of

tongue non-muscular tissue, the quantity of muscle atonia, the reflex mechanism critical pressure threshold

and neurological signal delay all were evaluated and their influence on retroglossal tongue movement due

to airway pressure was quantified. In these scenarios, it was assumed that some loss of airway patency had

occurred, thus lowering the minimal epiglottal pressure.

From the results presented in section 13.4, it is evident that the normal loss of tone in the GG associated with

sleep leads to several millimetres of retroglossal movement. This motion is amplified when both the GGp

and GGm are affected, as opposed to the GGp (the main dilator) alone. Displacement hysteresis was also

observed during the breathing cycle, indicating the significance of the viscoelastic nature of active muscular

tissue. During normal sleep with no airway occlusion, gravitational influences dominate and posterior mo-

tion of the tongue is greatest in the supine posture. Atonia in both the GGp and GGm lead to in excess of

1.5mm posterior movement at atmospheric epiglottal pressure in this orientation. Under load, the maximal

displacement condition was still that of the most reclined posture, but the pressure-induced displacement

was greatest for the upright posture. The effect of many pathologies on the response to airway loading in

a collapsed airway are more noticeable in the upright or lateral10 posture when the muscle tone, and there-

fore pre-load stiffness of the muscular tissue required to overcome gravitational forces, is lowest. Although

this appears contrary to the literature (see [268, 269]), it primarily suggests that the no-load response of the

tongue at the initiation of inhalation is a critical factor in the determination as to whether a loss of patency of

the upper airway will occur in a given breathing cycle.

In the upright posture, the cessation of reflexive actions is the primary mechanism that leads to large dis-

placements, even at low levels of sleep-induced atonia. However, for the supine orientation it is general

GG atonia resulting in a loss of resistance to gravitational forces that remains the dominant contributor to

anteroposterior tongue movement unless the threshold pressure is very high. For a prescribed air-pressure

load pattern, a delay in the reflexive action of the dilators leads to no increase in the maximal displacement

of the tongue posterior but did result in an increase in movement at higher pressures during the initial stages

of inspiration. This may again lead to a pathogenic scenario due to the low-load movement of the tongue.

Lastly, it was observed that a decrease in the volume occupied by the muscle fibres with no corresponding

change in the muscular activity during sleep leads to very large deformations in both the upright and supine

orientations.

Related to the cephalometric measurements of this geometry mentioned in section 8.8.2, the motion result-

ing from individual sleep-related phenomena evaluated here, without accounting for the movement of the

pharyngeal constrictors, reduce the anteroposterior diameter of this upper pharynx geometry by up to 30%

during high-resistance oral inhalation with a φf “ 0.7. However, it is reasonable to assume the cumulative

displacement due to the compounding effect of multiple pathologies will be greater than this. The natural

limiting case for this geometry and a φf “ 0.7 is the supine orientation with the maximal oral pressure load

applied to the passive tongue. This leads to a 9.1mm of posterior movement of its rear surface. This limit is

nearly reached when introducing a large φf and dilator response mismatch, with up to 45% reduction in the

10 The reader is reminded of the supplementary study discussed in section 11.2.1, in which it was stated that the tongue muscle

response when in lateral postures is qualitatively similar to that with the body assuming the upright posture. Assuming that the

two component non-dilatory muscles lateral to the midsagittal plane keep the tongue out of contact with the palate, teeth and other

buccal tissues, then it can be inferred that lying on one’s side may be detrimental due to decreased tone of the GG. However, the

act of performing lateral control of the tongue position results in increased stiffness of certain regions of tissue and may partially

negate this effect.
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anteroposterior diameter achieved during sleep.

Given the spectrum of measurements presented in the literature (see table 8.1), it is noted that for many

subjects the pathology-induced displacements11 predicted during sleep could result in a near complete filling

of the upper pharyngeal space by the tongue. In the worst cases, the lack of resistance to the gravitational

forces alone could induce such a behaviour. This reinforces the importance of sleep posture described in the

literature, but also demonstrates that any of the pathologies investigated here, or the exacerbation thereof,

may play a significant role in the induction of an apnoeic event.

11 The reader should also be reminded of the points made in the comparison drawn in section 13.3, where it was inferred that, due to

the simulation methodology employed, the large displacements measured due to airway load in section 13.4 may be significantly

exaggerated. That said, the retroglossal displacements predicted to occur during sleep and for the varying pathologies are sizable

in comparison to the anteroposterior cephalometric measurements for OSA patients listed in table 8.1.
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Imaging data has been used to construct a physiologically realistic model of the human tongue and sur-

rounding tissues. Micro-histological data was also extracted and used to describe the tongue musculature.

Simultaneously, the geometry of the surrounding airway including the nasal passages, buccal cavity, phar-

ynx and trachea was reconstructed. CAD software was utilised to translate the extracted imaging data into

meshed models for use in FEA and CFD analysis. A customised quasi-incompressible finite-strain elastic

solver, based on well established and robust numerical methods, was developed using an open-source FE

library. A muscle model, linking the micro- and macro-scale geometries, was introduced to describe the

transverse isotropic behaviour of both passive and active muscular tissue. A method of simplifying complex

geometries produced by capturing some of the extrinsic muscles of the tongue was developed.

A number of small studies were conducted to better understand the functioning of the tongue and ultimately

assist in the derivation and motivation of mechanisms incorporated into a neuromuscular control algorithm.

Initially, simple scenarios were evaluated to establish the response of the passive tongue as a whole and

together with its underlying histology to gravitational and airway loading. The motion produced through the

isolated contraction of individual tongue muscles was then tested and determined to be consistent with that

described in both the human anatomical and computational literature. The importance of muscle coactivation

was shown by demonstrating the complex movements only possible through the coordinated contraction of

several muscle groups. The change in length of each muscle induced by the contraction of other muscles was

then measured, and the minimal activation of the GG required to resist posterior movement of the tongue

due to airway and gravitational loading was computed.

An open-source GA library was coupled to the FE solver for the purpose of providing an automated method

of muscle control in response to a priori unknown stimuli. Control of the spatial position and energetic

properties of the active tongue was established through the use of a multi-objective optimisation function.

The steps related to the development of the control algorithm, as well as its basic functioning, were shown in

detail. Numerous methods were employed to minimise the number of expensive state evaluations required

by the non-deterministic GA. However, it was demonstrated that the model was robust and provided good

spatial control and repeatable trends for the active muscle set under various scenarios. The results also

appeared consistent with data presented in the cited literature.

A wide parametric study was conducted to optimise the functioning of the neural control model and establish

the parameters most critical to the general functioning of the tongue under complex loading situations. It

was demonstrated that the neural model captured the dilatory action of the GG and the role that several
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physiological and environmental factors play in its response to loads. Importantly, it was demonstrated that

the GG, as well as the other muscles of the tongue, are more than capable of producing sufficient contractile

force to overcome airway loading, even during periods of very heavy respiration.

A CFD model was developed and validated by demonstrating that the flow-field and pressure losses in

various regions of the anatomy were consistent with data and studies described in the literature. Analysis of

the airflow in the HUA was used to corroborate the initial pressure distribution assumed to develop under

conditions of nasal and oral inspiration and expiration. It was shown that the pressure field developed

during oral inspiration leads to the greatest anteroposterior pressure gradient on the tongue surface, and that

an increase in the air flow rate increases the pressure losses in the buccal cavity.

The now optimised neural model was subsequently applied to the tongue when loaded using the pressure

distribution extracted from the CFD study. A comparison was made between the passive behaviour of the

tongue and a response for the airway dilators, qualitatively similar to that determined during the transient

parametric study, was established. However, it was decided that the quasi-static behaviour of the neural

model was sub-optimal, and that further exploration on the response of the tongue under transient conditions

would be most enlightening in terms of understanding the precipitators of SDB.

Using the information and understanding gained from the previous studies, a wide-scale set of simulations

was performed and data extracted from the neural model was used to produce an analytical model describing

the awake response of several muscle groups during breathing to variable environmental influences. The

resulting model was derived from, and consistent with, previous iterations developed under more simple

conditions. It fitted the extracted trends accurately and captured the hysteresis effects developed due to the

viscoelastic nature of active muscular tissue. Later, parameters were introduced to invoke the sleep-state

response of the airway dilators observed during polysomnography.

Applied to several pathogenic scenarios, the model was used to highlight the importance of the no-load re-

sponse of the tongue in resisting gravitational forces and preventing the initial movement that may lead to

SDB, such as OSA. Additionally, it was shown that the degradation of dilator response, by atonia or the loss

of reflexive mechanisms, may lead to large retroglossal movement of the tongue which for some patients

could result in complete occlusion of the retropharynx. Since these phenomena are normal during sleep, the

degree to which they affect the retroglossal movement was methodically quantified. A delay of the order

of tens of milliseconds in the response of the dilators to the airway load was shown to lead to abnormal

behaviour in the tongue especially at the onset of inhalation. The potential degradation in the performance

of the dilators, both during wakefulness and sleep, due to increased deposition of non-muscular tissue in

the tongue was also quantified. Comparing these results with experimental studies documented in the lit-

erature, it was concluded that the tissue deformation present at the inception of airway pressure drop was

particularly important in terms of the precipitation of airway collapse. All of the factors listed above have

been demonstrated to have an influence in this regard.

PAGE 226



15. RECOMMENDATIONS

There are a number of areas in which the models developed for the purpose of this work can be improved.

These include the

Geometry: It would be ideal to find a dataset more suitable for the study of OSA and other SDB syndromes,

namely one derived from a patient confirmed as having been inflicted with the disorder. Such a dataset

should also ensure the tongue is in a more natural position. A more accurate description of the spatial

distribution of tongue muscle volume fractions should be attained and and incorporated into this data.

Extension of the solid geometry to incorporate other soft tissue structures of the HUA, such as that

presented in appendix I.1, would assist in gaining a deeper understanding of the interaction between

the tongue and soft palate during breathing.

Materials : More experimental work needs to be performed to come to a definitive conclusion on the material

parameters of the passive tongue. This should distinguish the effects of sample age and extraction site

on the measured properties. If measured in vivo, additional consideration of the residual muscle tone

should be made. A frequency analysis, similar to that conducted in appendix I.2, could be correlated

against experimental measurements of resonance in the buccal region to assist in the validation of the

model. The material models should be expanded to include effects of viscoelasticity or viscoplasticity

to capture the hysteresis effects observed in passive muscular tissue. The importance of muscle fatigue

should be determined and incorporated into the muscle model if necessary.

FE model: Inertial effects should be added to the FE model so that an extension of application into the field

of linguistics, where large accelerations and velocities are present, can be made. The incorporation of

rigid body dynamics would make the simulation of hard tissues, such as bone and cartilage, more sim-

ple and enhance the functioning of the soft tissue solver. Contact between the tongue, teeth and palate,

which greatly influences tongue movement and the airflow developed during breathing, should be ac-

counted for. The use of higher-order elements would further increase the accuracy of the FE solution.

Using adaptive mesh refinement or hp-refinement would add further accuracy and help compensate

for the mesh count disadvantages incurred when using structured mesh.

Neural model: It would be ideal to devise a predictive control mechanism to emulate better the true nature

of proprioception and muscle control. The implementation of a learning algorithm, such as neural

networks, for use as a muscle control mechanism would work well for this purpose. To assist with

the computational expense of these algorithms, the use of a surrogate model, such as one based on

PAGE 227



15 ‚ RECOMMENDATIONS

the coarsest level of a multi-grid approach, should be investigated. It should be determined whether

a better method of describing the change in muscle activation, from a neurological perspective, could

be developed. This model, used to link the neural signal to the muscle activation level, should have a

better physiological basis for its parameters than that used in this work.

Boundary values for the pressure field: A substantial improvement regarding the description of pressure

BCs on the solid model is possible. Ideally, a transient coupled FSI model should be developed to cap-

ture the effect of the deformation of the pressure field developed in the airway and vice versa. This

would greatly reduce the complex load assumptions needed for the solid model, and counter the cir-

cular argument (regarding airway resistance developed from complex flow in a deformable domain)

which is needed to motivate the pressure field applied to the model. It is felt that accounting for the

changes in CSA associated with deformation of the upper airway tissues may produce different results.

Analytical model of muscle response: This portion of the model can be further refined by correlating the

coefficients to more realistic breathing cycle and loading patterns. This may require the addition of extra

terms to fit the new data. Computation of the response of the other tongue muscles to the epiglottal

pressure may also be useful for further studies.

Tongue models have been explored in considerable detail for a number of purposes (see section 8.2). Al-

though tailored for the application of researching SDB, the HUA tissue model can be applied to further fields

of research, including

Movement analysis: As demonstrated in appendix I.3, path-line following can be incorporated into the neu-

ral control model. This allows for the analysis of dynamic tongue movement, such as that achieved by

some of the control algorithms presented in the literature.

Linguistics Following on from the above point, the use of the neural model would allow the determination

of muscle synergisms involved in the performance of dynamic motions during speech.

Surgery and tumours: Understanding the effect of the development of tumours in the tongue and sur-

rounding tissues, and the impact of their surgical removal, has been presented in the literature. Changes

in the material parameters (stiffening mimicking the presence of a tumour) and geometry (tumour ex-

cision) can be used to simulate these conditions prior to physical intervention. Subsequent application

of the neural control model can allow the determination of the degree to which motion is lost, and

whether the muscles can be retrained to recover lost mobility.
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A. CONTINUUM MECHANICS

A.1 Zero strain condition

Considering the new definitions of total displacement, deformation gradient, and line element stretch and

direction provided in equations 3.24, 3.25, 3.28 and 3.30 (which also define the quantities in the current con-

figuration), evaluation of the two modified deformation states is made below.

A.1.1 Initial (zero strain) configuration

When the body takes the configuration which is classified to be the zero strain configuration, the displace-

ment uCR “ xI ´ X is possibly non-zero. In this configuration, the deformation gradient F CR “ F IR, and

therefore

F CI “ F IRF RI “ F IR
´
F IR

¯´1

“ I , (A.1)

from which all strain measures will have a magnitude of unity. When this configuration is attained, the

measure F RI is recorded and used to determine the total deformation gradient as defined in equation 3.25

from that point onwards. The corresponding stretch of a line element is

λCI “ λI “ |IN | “ 1 . (A.2)

Noting that the original direction vectors for line elements are recorded in the reference configuration, their

updated direction in the initial configuration is

nI “
F IRN

|F IRN |
. (A.3)

A.1.2 Reference configuration

By definition, the displacement of the reference configuration is uCR “ 0. Assuming that a non-trivial initial

configuration has been defined, the deformation gradient F CR “ I and it follows that

F CI “ IF RI “ F RI , (A.4)
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A ‚ CONTINUUM MECHANICS

which describes a pre-strained condition in this configuration. This is further demonstrated though the ref-

erential line element stretch magnitude

λCI “ λ0 “ |F RIN | ‰ 1 if F RI ‰ I . (A.5)

As the original line element direction vector is recorded in this configuration, it is expected that the (identity)

deformation has no effect on this direction vector. This is precisely the result given by

N 0 “
F CRN

|F CRN |

ˇ̌
ˇ̌
F CR

“I
“ N . (A.6)

A.2 Tensor operations

Due to the simplicity arising with working in the stationary reference configuration, the derivation of deriva-

tives of quantities with respect to referential deformation measures are provided below. Where useful, their

spatial equivalents are derived as well.

A.2.1 Derivatives

A.2.1.1 Rank 2 tensors

The derivative of the invariants (equations 3.21a and 3.21b) with respect to the right Cauchy-Green deforma-

tion tensor are

BIC1
BC

“ I (A.7)

BIC2
BC

“ IC1 I ´ C , (A.8)

while that of the volumetric Jacobian (related to equation 3.21c by equation 3.22) is

BJ

BC
“

1

2
JC´1 . (A.9)

This can be confirmed by comparing the time-rate 9J “
BJ

BC
: 9C with a manipulation the result given later in

equation B.6. A quantity that often appears in later text is the term

BJ´ 2

3

BC
“

BJ´ 2

3

BJ

BJ

BC
“

ˆ
´
2

3
J´ 5

3

˙ ˆ
1

2
JC´1

˙
“ ´

1

3
J´ 2

3C´1 . (A.10)

The derivative of stretch of a line element (a reference-frame invariant quantity) with respect to the right

Cauchy-Green tensor is derived by from the definition of the magnitude of stretch given in equation 3.23a.

Taking the derivatives of both sides with respect to C,

2λ
Bλ

BC
“ N b N ñ

Bλ

BC
“

1

2λ
N b N . (A.11)

The quantity N b N is sometimes referred to as the structure tensor.
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A.2 ‚ TENSOR OPERATIONS

A.2.1.2 Rank 4 tensors

The rank 4 tensor
BC´1

BC
is evaluated by the expression

BC´1
AB

BCCD
“ ´C´1

ACC
´1
BD “ ´

1

2

`
C´1

ACC
´1
BD ` C´1

ADC´1
BC

˘
. (A.12)

This can be derived in the following manner: Taking derivatives of both sides of the identity equation

I “ C´1 C produces

0 “
B

BCCD
δAE “

B

BCCD

`
C´1

ABCBE

˘
“

BC´1
AB

BCCD
CBE ` C´1

ABδBCδDE .

Multiplying by a factor of C´1, the final result

0 “

ˆ
BC´1

AB

BCCD
CBE ` C´1

ACδDE

˙
C´1

EF “
BC´1

AF

BCCD
` C´1

ACC
´1
DF

is obtained, which upon rearrangement leads to equation A.12.

Using equation A.10, the derivative of the isochoric right Cauchy-Green deformation tensor with respect to

its non-isochoric counterpart

BC̄

BC
“

B

BC

´
J´ 2

3C
¯

“ C b
BJ´ 2

3

BC
` J´ 2

3

BC

BC
“ C b

„
´
1

3
J´ 2

3C´1

ȷ
` J´ 2

3 I

“ J´ 2

3

ˆ
I ´

1

3
C b C´1

˙
“: pP (A.13)

leads to the definition of the the referential deviator tensor pP.

A.2.2 Push-forward operations

This operation is defined by equation 3.37 for rank 2 tensors and equation 3.56 for rank 4 tensors.

A.2.2.1 Rank 2 tensors

Common rank 2 tensors that undergo push-forward operation in later calculations include that of the identity

tensor

χ pIq “ b , (A.14)

the right Cauchy-Green deformation tensor

χ pCq “ b2 (A.15)

and its inverse

χ
`
C´1

˘
“ I . (A.16)

The referential structure tensor can also be defined in a spatial setting by

χ pN b Nq “ pFNq b pFNq “ λ2n b n . (A.17)

PAGE A–3



A ‚ CONTINUUM MECHANICS

A.2.2.2 Rank 4 tensors

In general, the transformation of a fourth-order tensor which produced by the dyadic-product of two second-

order tensors can be described by the dyadic product of the transformation of the individual rank-2 tensors:

χ pG b Hq “ χ pGq b χ pHq . (A.18)

Using equation A.18 in conjunction with equations A.14 to A.17, the following commonly used identities

become self-evident:

χ pI b Iq “ b b b (A.19)

χ pC b Cq “ b2 b b2 (A.20)

χ pC b Iq “ b2 b b (A.21)

χ pI b Cq “ b b b2 (A.22)

χ
`
C´1 b C´1

˘
“ I b I (A.23)

χ pN b N b N b Nq “ λ4 n b n b n b n (A.24)

Furthermore, the spatial transformation operation acting on the fourth order identity tensor results in

χ pIq “ bsbb (A.25)

where the operation sb has the definition provided in equation 3.57, and result given in equation A.12 is

pushed forward by

χ

ˆ
BC´1

BC

˙
“ ´I . (A.26)

A.3 Volumetric-deviatoric split of SEF

Starting with the SEF described using referential quantities

ψ “ pψvol pJq ` pψiso
`
C̄, λ̄f

˘
, (A.27)

application of equation 3.51 results in the additive decomposition of the second Piola-Kirchhoff stress

S “ Svol pJq ` Siso
`
C̄, λ̄f

˘
. (A.28)

The volumetric component of the stress can be computed with the assistance of equation A.9 as

Svol “ 2
B pψvol

BJ

BJ

BC
“ pψ1

volJC
´1 (A.29)

which upon the use of equation 3.37 results in equation 3.82a. Using equation A.13, the isochoric component

of the second Piola-Kirchhoff stress is given by

Siso “ 2
B pψiso

BC̄
:

BC̄

BC
“ S̄ : pP “ pP : S̄ (A.30)
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where the symmetry of pP is exploited and we define an auxiliary stress quantity

S̄ “ 2
B pψiso

BC

ˇ̌
ˇ̌
C“C̄

(A.31)

which is the referential counterpart to that given in equation 3.82c.

Noting that S : C “ τ : I , the push-forward of equation A.30 using equation 3.37 in conjunction with

equations 3.75 and A.13 results in

τ iso
ab “ FaAS

iso
ABFbB

“ FaA

„
J´ 2

3

ˆ
δACδBD ´

1

3
CCDC´1

AB

˙
S̄CD

ȷ
FbB

“

„ˆ´
J´ 1

3FaA

¯
δACδBD

´
J´ 1

3FbB

¯
´

1

3

´
J´ 2

3CCD

¯
FaAC

´1
ABFbB

˙
S̄CD

ȷ

“ F̄ aC S̄CDF̄ bD ´
1

3
S̄CDC̄CDδab

“ τ̄ab ´
1

3
τ̄ddδab

“

ˆ
δacδbd ´

1

3
δabδcd

˙
τ̄ cd

“ Pabcdτ̄ cd (A.32)

from which the definition of the spatial auxiliary stress equation 3.82c and deviatoric projection operator

equation 3.84 are produced. The latter performs the operation to a rank 2 spatial tensor

P : p‚q “ p‚q ´
1

3
tr p‚q I . (A.33)

Following from equation A.28, the additive decomposition of the elastic tangent is

H “ Hvol ` Hiso (A.34)

with the volumetric contribution

Hvol “ 4
B2 pψvol

BC2
“ 2

BSvol

BC

“ 2

ˆ
pψ2

vol
BJ

BC
b JC´1 ` pψ1

vol
BJ

BC
b C´1 ` pψ1

volJ
BC´1

BC

˙

“ J

ˆ´
pψ1

vol ` J pψ2
vol

¯
C´1 b C´1 ` 2 pψ1

vol
BC´1

BC

˙
(A.35)

derived making use of equations 3.55, A.9 and A.12. Equation 3.83a is subsequently computed using equa-

tions 3.56, A.23 and A.26.

The lengthy derivation of the isochoric tangent is summarised in the following lines. Using equation 3.55 in

conjunction with equations A.13 and A.30, the isochoric component of the elastic modulii is given by

Hiso “ 2
BSiso

BC
“ 2

B

BC

´
pP : S̄

¯

“ 2

«
BpP
BC

: S̄ ` pP :
BS̄

BC̄
:

BC̄

BC

ff

“ 2
BpP
BC

: S̄ ` pP : H̄ : pP . (A.36)
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A ‚ CONTINUUM MECHANICS

From the definition of the referential deviatoric operator, the first term in equation A.36 can be expanded to

the expression

2
BpP
BC

: S̄ “ ´
2

3

„`
Siso b C´1 ` C´1 b Siso

˘
´

`
S̄ : C̄

˘ ˆ
C´1 sbC´1 ´

1

3
C´1 b C´1

˙ȷ
(A.37)

Pushing this quantity forward into the current configuration results in the expression

JCiso
abcd “ FaAFbB

˜

2
BpPABEF

BCCD
S̄EF ` pPABEF H̄EFGH

pPGHCD

¸

FcCFdD (A.38)

where, upon expansion, the first term simplifies to

FaAFbB2
BpPABEF

BCCD
S̄EFFcCFdD “ ´

2

3

“`
τ iso

abδcd ` δabτ
iso

cd

˘
´ pτ̄eeqPabcd

‰
. (A.39)

After some manipulation, the second term is simply

FaAFbB
pPABEF H̄EFGH

pPGHCDFcCFdD

“ J
2

3

´
FaAFbB

pPABEFF
´1
Ee F

´1
Ff

¯ `
F̄ eI F̄ fJH̄IJKLF̄ gK F̄hL

˘
J

2

3

´
F´1
GgF

´1
Hh

pPGHCDFcCFdD

¯

“ PabefJC̄efghPghcd (A.40)

using equation 3.83c and the identity

FaAFbB
pPABEFF

´1
EhF

´1
Fg “ J´ 2

3Pabgh . (A.41)

Insertion of equations A.39 and A.40 into equation A.38 leads to the result given in equation 3.83b.

A.4 Motion-dependent boundary conditions

A.4.1 Fictitious material layer

With reference to figure 3.5 and the definitions provided in section 3.7.1.1, the following paragraphs detail the

linearisation of the displacement-dependent traction conditions (section 3.7.1.2) associated with the fictitious

material layer.

Linearisation with respect to the displacement of the material thickness equation 3.92 leads to

Bh
Buj

“
B

Buj
rh0 ´ ukNks “ ´

Buk

Buj
Nk “ ´Nj (A.42)

while, using equation A.42, that of its inverse equation 3.92 results in

Bh´1

Buj
“ ´h´2 Bh

Buj
“ h´2Nj . (A.43)

With the use of equations 3.92 and A.42, the derivative of the scalar normal strain equation 3.93 with respect

to the displacement is

Bε

Buj
“

B

Buj

„
ln

ˆ
h
h0

˙ȷ
“

ˆ
h
h0

˙´1

h0
´1 Bh

Buj
“ ´h´1Nj (A.44)

PAGE A–6



A.4 ‚ MOTION-DEPENDENT BOUNDARY CONDITIONS

and that of the shear strain equation 3.94 is

Bγα
Buj

“
B

Buj

«
uke

Sα

k

h

ff

“
Buk

Buj
eSα

k h´1 ` uke
Sα

k

Bh´1

Buj
“ h´1eSα

j `
´
uke

Sα

k

¯
h´2Nj “ h´1

´
eSα

j ` γNj

¯
(A.45)

using equation A.43 and the definition of the shear strain itself.

Application of the product rule leads to the definition of the derivative of the normal traction magnitude

equation 3.97 with respect to the normal strain

BσN

Bε
“

B

Bε
rE pεq εs “

BE

Bε
ε` E (A.46)

and that of the shear traction magnitude equation 3.98 with respect to the shear strain is

BσSα

Bγα
“

B

Bγα
r´G p|γα|q γαs “ ´

ˆ
BG

Bγα
γα ` G

˙
“ ´

ˆ
BG

B|γα|
|γα| ` G

˙
. (A.47)

The definition of the tangent matrix provided in equation 3.99 is derived from the linearisation of traction

vector (equation 3.95)

Bti
Buj

∆uj “

«
BtN

i

Buj
`

ÿ

α

BtSα

i

Buj

ff

∆uj (A.48)

where upon application of equations A.44 and A.46 to the first term of equation A.48 leads to equation 3.100,

the definition of the normal tangent

BtN
i

Buj
“

B

Buj

“
tNNi

‰
“

BtN

Bε

Bε

Buj
Ni , (A.49)

and use of equations A.45 and A.47 on the second term of equation A.48 results in equation 3.101a, the

stiffness of the tangential component of the traction

BtSα

i

Buj
“

B

Buj

”
tSα

eSα

i

ı
“

BtSα

Bγ

Bγ

Buj
eSα

i . (A.50)

A.4.2 External fibres

Using trigonometric relations and the definitions provided in figure 3.6, the angle between the displacement

vector and reference fibre vector determined from scalar product

cos pθq “
L0

f ¨ u

|L0
f ||u|

“
L0

f ¨ u

L0
f |u|

, (A.51)

which leads to the definition of the fibre length in current configuration as determined from triangle cosine

formula

Lf
2 “ L0

f
2

` ukuk ´ 2L0
f kuk . (A.52)

Taking derivatives of both sides of equation A.52 with respect to displacement, and noting the definition of

the current fibre direction given in equation 3.104 results in

2Lf
dLf

duj
“ 2uk

duk

duj
´ 2L0

f k
duk

duj
ñ

dLf

duj
“

1

Lf

´
uj ´ L0

f j

¯
“ ´nfj . (A.53)
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A ‚ CONTINUUM MECHANICS

Furthermore, linearisation of the current fibre stretch (equation 3.105) is determined using equation A.53

dλf

dui
“

1

L0
f

dLf

dui
“ ´

1

L0
f
nfi (A.54)

while that of equation 3.104, the current fibre direction, is calculated with the use of equation A.53 and results

in

dnfi

duj
“

d

Lf

„
1

Lf

ȷ
dLf

duj

`
L0

f i ´ ui

˘
`

1

Lf

d

duj

`
L0

f i ´ ui

˘

“

ˆ
´

1

Lf
2

˙ `
´nfj

˘ `
L0

f i ´ ui

˘
`

1

Lf

ˆ
´
dui

duj

˙

“
1

Lf

`
nfinfj ´ δij

˘
. (A.55)

Finally, the linearisation of the traction, equation 3.106, is determined using the chain rule and equations 3.105

and A.53 to A.55 with the result that

dtfi

duj
“ φf

„
dλf

duj
Tfnfi ` λf

dTf

duj
nfi ` λfTf

dnfi

duj

ȷ

“ φf

„
dλf

duj

ˆ
Tf ` λf

dTf

dλf

˙
nfi ` λfTf

dnfi

duj

ȷ

“
φf

L0
f

„
´

ˆ
Tf ` λf

dTf

dλf

˙
nfinfj ` Tf

`
nfinfj ´ δij

˘ȷ
, (A.56)

which lead to the definition provided in equation 3.107.
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B.1 Evaluation of deformation increments

For a general motion ϕ, pressure p and dilatation θ, the virtual increments δϕ, δp, δθ are defined as

v “ ϕ ` ε δϕ , q “ p ` ε δp , γ “ θ ` ε δθ (B.1)

with v, q, γ representing the total virtual displacement, pressure and dilatation and ε a perturbation.

From the above, the deformation gradient (equation 3.3) associated with the total virtual displacement is

F pvq “ I `
Bv

BX
“ I `

B pϕ ` εδϕq

BX
. (B.2)

Making use of the Frechét derivative defined in equation 4.4, the virtual deformation gradient associated

with the virtual displacement increment δϕ is

DϕF pϕq ¨ δϕ “
dF pvq

dε

∣

∣

∣

∣

ε“0

“ ∇0 δϕ “ ∇ δϕF :“ δF , (B.3)

which also implies that

∇ δϕ “ δFF´1 . (B.4)

Note that the result of the computations of the virtual increment δp‚q, linear increment ∆p‚q and time-rate

p‚q9 have the same form. For example, using a different interpretation of the definition prescribed to ε and

the incremental operator, equation 3.10 can be inferred from equation B.4.

Using the chain rule and equation B.3, the virtual left Cauchy-Green deformation tensor (equation 3.14b) is

δb :“ δFF T ` F δF T “ 2
´
δFF T

¯S
“ 2 p∇ δϕ bqS (B.5)

using the symmetric operator p‚qS defined in section 3.1.

Noting the identity ∇ ¨ p‚q “ I : ∇ p‚q “ I : r∇ p‚qsS, the virtual increment of the volumetric Jacobian is

δJ :“ JF´T : δF “ JI : ∇ δϕ “ J tr p∇ δϕq “ J ∇ ¨ δϕ (B.6)

using equations 3.14a, A.9 and B.3 and the symmetry of C.
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With the assistance of equations B.3 and B.6 and noting the operation performed by the spatial deviator tensor

(equation A.33) and its symmetric properties, the virtual isochoric deformation gradient (equation 3.74b) is

determined to be

δF̄ :“ J´ 1

3

ˆ
δF ´

1

3
∇ ¨ δϕ F

˙
“ J´ 1

3

ˆ
∇ δϕ ´

1

3
tr p∇ δϕq

˙
F “

´
P : p∇ δϕqS

¯
F̄ . (B.7)

Furthermore, the virtual isochoric left Cauchy-Green tensor (equation 3.76), calculated using equation B.7

and the same properties of the deviator tensor described above, is

δb̄ :“ J´ 2

3

ˆ
δb ´

2

3
∇ ¨ δϕ b

˙
“ 2

ˆ
p∇ δϕqS ´

1

3

´
p∇ δϕqS : I

¯˙
b̄ “ 2

´
P : p∇ δϕqS

¯
b̄ (B.8)

B.2 Mixed three-field formulation

B.2.1 Residual formulation

The residual equation is for the three-field problem is developed by taking the first variation of equation 4.3a

with respect to all independent fields using the Frechét derivative (equation 4.4). The result of this procedure

is

R pδϕ, δθ, δp,ϕ, θ,Λ, pq “ DϕΠ ¨ δϕ ` DpΠ ¨ δp ` DθΠ ¨ δθ

“ Rδϕint ` Rδϕext ` Rδpint ` Rδθint (B.9)

with the expansion of the individual terms provided below.

Equation 4.5a, the internal residual contribution derived from the motion, results from

Rδϕint “ DϕΠint ¨ δϕ

“
Ω0

ż "
Bψiso

`
b̄

˘

Bb̄
: δb̄ ` pδJ

*
dΩ0

“
Ω0

ż "
Bψiso

`
b̄

˘

Bb̄
: 2

´
P : p∇ δϕqS

¯
b̄ ` pJ

´
p∇ δϕqS : I

¯ *
dΩ0

“
Ω0

ż "
2

Bψiso
`
b̄

˘

Bb̄
b̄ : P : p∇ δϕqS ` pJI : p∇ δϕqS

*
dΩ0 (B.10)

using equations 3.82b, A.33, B.6 and B.8 and the symmetry of I, b̄ and P, and noting that that the push forward

of the auxiliary second Piola-Kirchhoff stress can be written as

τ̄ “ F̄ S̄F̄
T

“ F̄ 2
B pψiso pCq

BC

ˇ̌
ˇ̌
C“C̄

F̄
T

“ F 2
B pψiso pCq

BC
F T

ˇ̌
ˇ̌
F“F̄

“ 2
Bψiso pbq

Bb
b

ˇ̌
ˇ̌
b“b̄

“ 2
Bψiso

`
b̄

˘

Bb̄
b̄ (B.11)

resulting in equation 3.82c. The first variation of the total external work is

Rδϕext “ DϕΠext ¨ δϕ “ ´
Ω0

ż "
δϕ ¨ b

*
dΩ0 ´

Γt
0

ż "
δϕ ¨ t pϕq

*
dΓt

0 (B.12)

which leads directly to equation 4.16c when the boundary decomposition described in section 3.7 taken into

account. Variation of the constraint leading to the equality of volumetric Jacobian and dilatation (equa-

tion 4.2a) is

Rδpint “ DpΠint ¨ δp “
d

dε

∣

∣

∣

∣

ε“0 Ω0

ż "
q pJ ´ θq

*
dΩ0 , (B.13)
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resulting in equation 4.5c, while that of the incompressibility condition (equation 4.2b)

Rδθint “ DθΠint ¨ δθ “
d

dε

∣

∣

∣

∣

ε“0 Ω0

ż "
ψvol pγq ´ pΛ ´ pq γ

*
dΩ0 (B.14)

leads to equation 4.5d using the chain rule derived identity ψvol pγq “
Bψvol pθq

Bθ
δθ.

B.2.1.1 Domain of integration

Notice that in equation 4.5a the integral is over the reference domain and the integrand involves quantities

defined in the current configuration. Using equations 3.41 and 3.46, this expression is shown to be equivalent

to equation 3.72

Ω0

ż
∇ δϕ : τ dΩ0 “

Ω0

ż
∇ δϕ : Jσ dΩ0 “

Ω

ż
∇ δϕ : σ dΩ . (B.15)

Similarly, the tangent matrix integrals developed in appendix B.2.2 have the form

Ω0

ż
∇ δϕ : JC : ∇∆ϕ dΩ0 “

Ω

ż
∇ δϕ : C : ∇∆ϕ dΩ . (B.16)

B.2.2 Linearisation

Linearisation of the residual equation (equation B.9) results in the tangent

K pδϕ, δθ, δp,∆ϕ,∆θ,∆p,ϕ, θ, pq “ D2
ϕΠ ¨ ∆ϕ ` D2

pΠ ¨ ∆p ` D2
θΠ ¨ ∆θ

“
´
DϕRδϕint ¨ ∆ϕ ` DϕRδϕext ¨ ∆ϕ ` DpRδϕint ¨ ∆p

¯
`

´
DϕRδpint ¨ ∆ϕ ` DθRδpint ¨ ∆θ

¯

`
´
DpRδθint ¨ ∆p ` DθRδθint ¨ ∆θ

¯

“ Kδϕ,∆ϕ
int ` Kδϕ,∆ϕ

ext ` Kδϕ,∆p
int ` Kδp,∆ϕ

int ` Kδp,∆θint ` Kδθ,∆p
int ` Kδθ,∆θint . (B.17)

Following Holzapfel et al. [107], the derivation of the first term of equation B.17 is completed using a rate-

based description for the purpose of increased legibility. As the virtual displacement field is independent of

the real displacement, its rate is

p∇ pδϕqq9 “ δF 9F
´1

“ ´δFF´1l “ ´∇ pδϕql (B.18)

using the identity

`
F´1F

˘
9 “ 9I “ 0 ñ 9F

´1
“ ´F´1 9FF´1 ,

which, by application of equation 3.10, also implies that

F 9F
´1

“ ´l . (B.19)

The Lie time-derivative of the Kirchhoff stress, which provides the stress rate, is

L pτ q “ 9τ ´ lτ ´ τ lT (B.20)

” JC : d , (B.21)
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the first part coming from the definition of the Lie time-derivative (total time derivative of contravariant

tensors) with the use of equation B.19

L pτ q :“
dτ

dt
“ F

ˆ
D

Dt

´
F´1τF´T

¯˙
F T

“ F
´

9F
´1

τF´T ` F´1
9τF´T ` F´1τ 9F

´T
¯
F T

“ F 9F
´1

τF´TF T ` FF´1
9τF´TF T ` FF´1τ 9F

´T
F T

“ ´lτ ` 9τ ´ τ lT (B.22)

and the second from the equivalence of the form of the total time derivative and the linearisation of τ , that is

∆τ “
Bτ

B ∇ p∆ϕq
: ∇ p∆ϕq “ JC : ∇ p∆ϕq ñ 9τ “ JC : ∇ p 9ϕq . (B.23)

Equating and rearranging equations B.21 and B.22, the Kirchhoff stress rate can therefore be written as

9τ “ JC : d ` lτ ` τ lT . (B.24)

Expressed in terms of rates and through the application of equations B.18 and B.24, the linearisation of the

integrand of equation 4.5a is thus

p∇ pδϕq : τ q9 “ p∇ pδϕqq9 : τ ` ∇ pδϕq : 9τ

“ ´∇ pδϕq : τ lT ` ∇ pδϕq :
´
JC : d ` lτ ` τ lT

¯

“ ∇ pδϕq : pJC : d ` lτ q (B.25)

where τ “ τ iso ` pJI and the total displacement tangent JC “ JCiso ` pJ pI b I ´ 2 q. The contribution to

the incremental problem for the motion-dependent portion of the residual equation therefore appears in the

form

Kδϕ,∆ϕ
int “

Ω0

ż "
∇ pδϕq : rJCiso ` pJ pI b I ´ 2 qs : ∇ p∆ϕq

*
dΩ0

`
Ω0

ż "
∇ pδϕq : ∇ p∆ϕq rτ iso ` pJIs

*
dΩ0 , (B.26)

and that for the motion-dependent portion of the external energy equation is

Kδϕ,∆ϕ
ext “ ´

Γtpuq
0

ż "
δϕ ¨

Bt puq

Bϕ
∆ϕ

*
dΓtpuq

0 (B.27)

which is equivalent to equation 4.17e. The other linearisation terms following from the three-field formula-

tion, that is when Λ is not treated as field-variable, are simply

Kδϕ,∆p
int “

Ω0

ż "
∇ pδϕq : ∆pJI

*
dΩ0 “

Ω0

ż "
J ∇ ¨ pδϕq∆p

*
dΩ0 (B.28)

Kδp,∆ϕ
int “

Ω0

ż "
δpJI : ∇∆ϕ

*
dΩ0 “

Ω0

ż "
δpJ ∇ ¨∆ϕ

*
dΩ0 (B.29)

Kδp,∆θint “ ´
Ω0

ż "
δp∆θ

*
dΩ0 (B.30)

Kδθ,∆p
int “ ´

Ω0

ż "
δθ∆p

*
dΩ0 (B.31)

Kδθ,∆θint “
Ω0

ż "
δθψ2

vol pθq∆θ

*
dΩ0 (B.32)

using equation B.6 and noting that ∆ψvol pθq “
Bψvol pθq

Bθ
∆θ.
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B.3 Mean dilatation Q1-P0 element

As the name suggests, the mean dilatation Q1-P0-P0 element assumes that the dilatation and pressure quan-

tities are piecewise constant and discontinuous. Due to this property, these terms can be filtered out on an

element level resulting in a displacement-only formulation.

On a per-element basis, the weak-form of equation 4.2a can be modified such that

Ωe
0

ż
θe dΩe

0 “
Ωe

0

ż
J dΩe

0 ñ θe

Ωe
0

ż
dΩe

0 “
Ωe

0

ż
J dΩe

0 (B.33)

resulting in equation 4.14, along with the associated equations 4.12 and 4.13, by application of equation 3.46.

Variation and linearisation of equation B.33 using equation B.6 leads to

δθe “
1

Ve
Ωe

0

ż
δJ dΩe

0 “
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0 (B.34)

∆θe “
1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0 . (B.35)

From equation 4.5d, the element-wise pressure is determined to be

Ωe
0

ż
pe dΩe

0 “ pe

Ωe
0

ż
dΩe

0 “
Ωe

0

ż "
ψ1

vol pθq ` Λ

*
dΩe

0

ñ pe “
1

Ve
Ωe

0

ż "
ψ1

vol pθq ` Λ

*
dΩe

0 (B.36)

which leads to equation 4.15 when it is assumed that Λ is constant on an element. Using equation B.34, the

resulting variation and linearisation of equation B.36 is

δpe “ ψ2
vol pθeq δθe “ ψ2

vol pθeq
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0 (B.37)

∆pe “ ∆
`
ψ1

vol pθeq ` Λ
˘

“ ψ2
vol pθeq∆θe “ ψ2

vol pθeq
1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0 . (B.38)

The reduced displacement residual formulation, attained by substitution of equation B.34, equation B.37 into

equation B.9, is

Rint pδϕ,ϕ, θ, pq “
Ω0

ż "
∇ pδϕq :

“
τ iso

`
b̄, λ̄f

˘
` pJI

‰ *
dΩ0

`
Ω0

ż "
ψ2

vol pθeq
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0 pJ ´ θq

*
dΩ0

`
Ω0

ż "
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0

`“
ψ1

vol pθq ` Λ
‰

´ p
˘ *

dΩ0

“
Ω0

ż "
∇ pδϕq :

“
τ iso

`
b̄, λ̄f

˘
` peJI

‰ *
dΩ0

`

nelř
e“1

ψ2
vol pθeq

1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0
Ωe

0

ż "
J ´ θe

*
dΩe

0

`

nelř
e“1

1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0
Ωe

0

ż " “
ψ1

vol pθeq ` Λe
‰

´ pe
*

dΩe
0

. (B.39)
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By using the element-wise definitions of θ, p listed in equations 4.14 and 4.15, this further reduces to the form

given in equation 4.16b.

Using the discontinuity of the fields, their constant value over the element and applying equation B.34, equa-

tion B.37, equation B.35, equation B.38 to equations B.28 to B.32 as required in equation B.17, the expression

Ω0

ż "
∇ pδϕq : JI∆p

*
dΩ0 `

Ω0

ż "
δpJI : ∇ p∆ϕq

*
dΩ0

´
Ω0

ż "
δθ ∆p

*
dΩ0 ´

Ω0

ż "
δp ∆θ

*
dΩ0 `

Ω0

ż "
δθ ψ2

vol pθq∆θ

*
dΩ0

“

nelř
e“1

«

Ωe
0

ż "
∇ pδϕq : JI∆pe

*
dΩe

0 `
Ωe

0

ż "
δpeJI : ∇ p∆ϕq

*
dΩe

0

´
Ωe

0

ż "
δθe ∆pe

*
dΩe

0 ´
Ωe

0

ż "
δpe ∆θe

*
dΩe

0 `
Ωe

0

ż "
δθe ψ2

vol pθeq∆θe
*

dΩe
0

ff

“

nelř
e“1

«

Ωe
0

ż
∇ pδϕq : JI dΩe

0 ψ
2
vol pθeq

1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0

`ψ2
vol pθeq

1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0
Ωe

0

ż
JI : ∇ p∆ϕq dΩe

0

´
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0
Ωe

0

ż
dΩe

0 ψ
2
vol pθeq

1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0

´ψ2
vol pθeq

1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0
Ωe

0

ż
dΩe

0
1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0

`
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0
Ωe

0

ż
ψ2

vol pθeq dΩe
0

1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0

ff

“

nelř
e“1

«
1

Ve
Ωe

0

ż
J p∇ pδϕq : Iq dΩe

0

ff
“
ψ2

vol pθeq Ve‰
«

1

Ve
Ωe

0

ż
J p∇ p∆ϕq : Iq dΩe

0

ff

(B.40)

is resolved. Applying equation B.40 to the internal contributions of equation B.17, the final form of the

reduced stiffness formulation derived from the internal energy is

Kint pδϕ,∆ϕ,ϕq “ Kvol ` Kmat ` Kgeo (B.41)

with the definitions of these terms provided in equations 4.17b to 4.17d.
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C.1 Constitutive relations for general fibrous hyperelastic materials

Beginning with the definition of the material SEF

ψ “ pψJ pJq ` pψM pCq `
ÿ

f

pψf pλfq “ ψJ pJq ` ψM pbq `
ÿ

f

ψf pλfq , (C.1)

a precursor to equation 5.1b, the derivation of the stress and tangent tensors for the volumetric compo-

nent (equations 5.4a and 5.5a) follows the same approach adopted in the determination of equations 3.82a

and 3.83a.

Energetic contributions from the bulk, ψM, are assumed to be a function of the tensor invariants. Using

equation 3.51, applying the chain rule and the derivatives noted in equations A.7 and A.8, the second

Piola-Kirchhoff stress is

SM “ 2
B pψM

BC
“ 2

˜
B pψM

BIC1

BIC1
BC

`
B pψM

BIC2

BIC2
BC

¸

“ 2

˜˜
B pψM

BIC1
` IC1

B pψM

BIC2

¸

I ´
B pψM

BIC2
C

¸

, (C.2)

which can be transformed to the spatial Kirchhoff stress tensor using equation 3.37, the result of which is

τM “ 2

ˆˆ
BψM

BIb1
` Ib1

BψM

BIb2

˙
I ´

BψM

BIb2
b

˙
b “ 2

BψM

Bb
b (C.3)

and equivalent to that provided in equation 5.4b. The tangent associated with equation C.2 is expanded to

HM “ 4
B2 pψM

BC2
“ 2

BSM

BC
“ 4

˜
B

BC

˜
B pψM

BIC1
I

¸

`
B

BC

˜

IC1
B pψM

BIC2
I

¸

`
B

BC

˜

´
B pψM

BIC2
C

¸¸

(C.4)

where the derivative quantities are given by

B

BC

˜
B pψM

BIC1
I

¸

“ I b

˜
B2 pψM

BIC1
2

BIC1
BC

`
B2 pψM

BIC2 BIC1

BIC2
BC

¸

“

˜
B2 pψM

BIC1
2

`
B2 pψM

BIC2 BIC1
IC1

¸

I b I ´

˜
B2 pψM

BIC2 BIC1

¸

I b C (C.5)

B

BC

˜

IC1
B pψM

BIC2
I

¸

“ I b

˜
BIC1
BC

B pψM

BIC2
` IC1

˜
B2 pψM

BIC1 BIC2

BIC1
BC

`
B2 pψM

BIC2
2

BIC2
BC

¸¸

“

˜
B pψM

BIC2
`

B2 pψM

BIC1 BIC2
IC1 `

B2 pψM

BIC2
2
IC1

2

¸

I b I ´

˜
B2 pψM

BIC2
2
IC1

¸

I b C (C.6)
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´
B

BC

˜
B pψM

BIC2
C

¸

“ ´

˜

C b

˜
B2 pψM

BIC1 BIC2

BIC1
BC

`
B2 pψM

BIC2
2

BIC2
BC

¸

`
B pψM

BIC2

BC

BC

¸

“ ´

˜
B2 pψM

BIC1 BIC2
`

B2 pψM

BIC2
2
IC1

¸

C b I `

˜
B2 pψM

BIC2
2

¸

C b C ´

˜
B pψM

BIC2

¸

I (C.7)

which, on substitution into equation C.4, produces the final result

HM “ 4

«˜
B2 pψM

BIC1
2

` 2
B2 pψM

BIC2 BIC1
IC1 `

B2 pψM

BIC2
2
IC1

2
`

B pψM

BIC2

¸

I b I

´

˜
B2 pψM

BIC2 BIC1
`

B2 pψM

BIC2
2
IC1

¸

pI b C ` C b Iq `

˜
B2 pψM

BIC2
2

¸

C b C ´

˜
B pψM

BIC2

¸

I

¸

. (C.8)

The spatial transformation of equation C.8 using equations 3.56, A.19 to A.21 and A.25 returns the result

given in equation 5.5b.

With the use of equation A.11, the second Piola-Kirchhoff stress derived from the internal fibre contributions

Sf “ 2
B pψf

BC
“ 2

B pψf

Bλf

Bλf

BC
“ pψ1

fλf
´1N f b N f (C.9)

which leads to equation 5.4c using equations 3.37 and A.17 The fibre tangent is then

Hf “ 4
B2 pψf

BC2
“ 2

BSf

BC
“ 2N b N b

˜
B pψ1

f

Bλf
λf

´1 ` pψ1
f
Bλf

´1

Bλf

¸
Bλf

BC

“
´

pψ2
f ´ pψ1

fλf
´1

¯
λf

´2N b N b N b N (C.10)

from which its spatial counterpart given in equation 5.5c is produced through the use of equations 3.56

and A.24.

C.2 Total work done by active contraction of muscles within a contin-

uum

Starting from the continuum definition of rate of work expended on a body in quasi-static deformation as de-

fined by equation 3.45, the insertion of the relations given by equation 5.6a along with the use of equation 3.41

results in

9W “
Ω

ż
p´pI ` σM `

ř
f φfσfq : l dΩ (C.11)

which is equivalent to

9W “ 9W vol ` 9W iso “ 9W vol ` 9WM `
ÿ

f

9W f .

From this, one can determine the total work rate of a specific muscle by noting that

9Wf “
Ωf

ż
φfσf : l dΩf “

Ωf
0

ż
φfτ f : l dΩf

0 (C.12)

which includes contributions from the PE, SE and CE. After decomposing the fibre Kirchhoff stress into

magnitude and directional components, further manipulation of equation C.12 using equations 3.10, 3.20,
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6.6, 7.15 and 7.16 produces

9Wf “
Ωf

0

ż
φfTfλfnf b nf : l dΩf

0

“
Ωf

0

ż
φfTfλf

´
nf ¨ 9FF´1nf

¯
dΩf

0

“
Ωf

0

ż
φfTf

´
9λfnf ¨ nf ` λfnf ¨ 9nf

¯
dΩf

0 (C.13)

and results in equation 7.14. Next, the use of the Hill-model relationships given in equations 6.3 and 6.4 and

stretch and stretch-rate relationship described in equations 6.7b and 7.17 to decompose equation C.13 into

the PE, SE and CE components

9Wf “
Ωf

0

ż
φfTp 9λf dΩf

0 `
Ωf

0

ż
φfTc 9λf dΩf

0

“
Ωf

0

ż
φfTp 9λf dΩf

0 `
Ωf

0

ż
φfTc

´
9λsλc ` λs 9λc

¯
dΩf

0

“
Ωf

0

ż
φfTp 9λf dΩf

0 `
Ωf

0

ż
φfTcλf

´
9λsλs

´1 ` 9λcλc
´1

¯
dΩf

0 (C.14)

from which the final result given in equation 7.18 is resolved.
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D. VALIDATION STUDIES

D.1 Finite-strain incompressible elasticity

A study verifying the FEM implementation of the incompressible finite-strain elasticity was performed. The

tests described below demonstrate the accuracy of implementation under compressive and shear loading.

D.1.1 Indentation test

The indentation test presented by Reese et al. [229] and elaborated on by Elguedj et al. [63] demonstrated

the effectiveness of the quasi-incompressible formulation under severe compressive loading. A cubic block

with an edge length of 1mm represents a quarter of the entire domain. Planar constraints on -X,-Y,-Z sur-

faces account for the symmetry of the problem. The +X,+Y surfaces are traction free while the +Z surface is

constrained in X,Y directions. A vertical load is applied on a 0.5mm2 patch on +Z surface, aligned against

the X-Z and Y-Z planes. The load, which is applied in the reference configuration, has a value of ´
p

p0
, with

the nominal load p0 “ 4MPa. The cube, which is considered near-incompressible, is composed of a Neo-

Hookean material with material parameters µ “ 80.19GPa and ν “ 0.499. The maximum dilatation error

allowed was 1 ˆ 10´4.

Figure D.1a depicts the displacement solution after 10 load steps at which the maximum load had been ap-

plied. The convergence of the solution under h-refinement is illustrated in figure D.1b. The results compared

very well with the literature.

D.1.2 Cook’s membrane

The Cook cantilever problem is used by Armero [5] to test the properties of FEM formulations under shear

loading and their resistance to volumetric locking. A non-regular beam is fully constrained on one side and

has a total vertical load of 100kN on the opposite face. The beam is in plane-strain and is thus constrained

through its thickness. The upper and lower surfaces remain traction free. The cantilever is composed of a

near-incompressible Neo-Hookean material with material properties µ “ 80.1938GPa and ν “ 0.499. Incom-

pressibility was considered to be obtained when the dilatation error was reduced to 1 ˆ 10´5.

Five load steps were used to obtain the displacement solution shown in figure D.2a. Comparing the re-

sults given in figure D.2b to those found in the literature, the mixed formulation with regular (non-skewed)
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(a) Compression of the block for
p

p0
“ 100 (16 el-

ements per side).
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Figure D.1: Indentation of a quasi-incompressible isotropic hyperelastic material

(a) Vertical displacement

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Elements per side

V
er
ti
ca
l
ti
p
d
is
p
la
ce
m
en
t

rm
m

s

(b) Convergence of vertical tip displacement

Figure D.2: Cook membrane with total vertical load of 100kN.

discretisation demonstrated similar results for convergence to those given for the Q1-P0 formulation. Com-

parable results were also obtained when evaluating the effect of mesh skewness as was performed by Armero

[5].

D.2 External/fictitious material model

To demonstrate the external tissue model, consider a 1 ˆ 2 ˆ 1mm3 volume composed of two dissimilar

materials, namely muscle matrix (without fibres) and adipose tissue. The volume is made to undergo shear

deformation by imposing a displacement constraint on both surfaces. The adipose tissue was fixed on the

upper surface, while the lower surface of the muscle had a prescribed lateral displacement and was fixed in

the other two directions. All other surfaces are considered traction-free. Both materials are of equal volume,

and have identical FEM meshes consisting of 64 identical elements. In the case where the fictitious material
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is considered, the adipose volume is removed and the interface surface treated with the traction condition

described by equations 3.97 and 3.98 in conjunction with the constitutive model given in section 5.4.3.1. The

fixed surface for the fictional material is set in the same position as that of the preceding case.

Comparison between the two results generated using equivalent boundary conditions is presented in fig-

ure D.3. It is demonstrated in figure D.3a that qualitatively similar solutions are produced using both meth-

ods. Since the muscle tissue is more compliant than the adipose, it undergoes a larger deformation. The

leading edge of the muscle is raised, while the trailing edge drops. Similar configuration of the traction-free

surfaces of the muscle body were also observed.

(a) Displaced solution
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(b) Lateral displacement of muscle-adipose interface

Figure D.3: Displacement of the interface between different tissue types. In figure D.3a, the silhouette of the

displaced solution for the two-material model is also depicted. The adipose tissue is coloured red

and fixed at the upper surface, while blue represents the muscle tissue volume which undergoes

translation of its lower surface. The dotted lines in figure D.3b denote values measured when

two material volumes exist.

However, as is clear from both figure D.3a and figure D.3b, the fictitious material case is conservative in terms

of the production of traction forces. The displacement of the material interface was significantly larger when

the presence of the adipose tissue was directly simulated, but the overall displacement trends are similar. The

performance difference is due to the conservancy of the shear component of the material model and the lack

of volumetric effects which form a constraint on the motion of the adipose tissue in the former case.

D.3 Passive tissue model

Validation of the constitutive models for passive skeletal muscle is presented. Some aspects regarding the

chosen material parameters are discussed and some initial observations on the reinforcing properties of the

muscle fibres, as well as the effect of fibre volume fraction, are made.
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D.3.1 Muscle matrix of the tongue

A comprehensive survey of models of the tongue and other relevant skeletal muscle models has been con-

ducted in order to characterise an accurate constitutive model for the passive tongue. Table D.1 provides an

account of the reported small strain Young’s modulus of passive tongue tissue used in various models and

from experimental analysis of skeletal muscle tissue.

Table D.1: Literature survey of muscle small strain Young’s modulus (human tongue unless otherwise

noted).

Source Value (kPa) Source Value (kPa)

Gérard et al. [86] 1.1a Vogt et al. [293] 10.1 a

Van Loocke et al. [286] 1b, 3.5c Van Ee et al. [282] 11d

Cheng et al. [39] 2.67e Perrier et al. [215] 12.25

Huang et al. [111] 6 Gérard et al. [85] 15

Buchaillard et al. [28], [29] 6.2 Dang and Honda [51] 20

Sanguineti et al. [245] 6.2 Fujita et al. [77] 30

Sanguineti et al. [244] 10

a Computationally derived value
b Fresh porcine / ovine skeletal muscle. Approximate value derived from reported data
c Aged porcine / ovine skeletal muscle. Approximate value derived from reported data
d Freshly post-mortem rabbit tibialis
e Calculated from a shear modulus value assuming ν “ 0.5.

In order to evaluate the various matrix models found in the literature that describe passive tongue muscle

tissue, a number of the models were implemented and evaluated with the uniaxial-stress test described in

footnote 4 on page 65. The resulting stress-strain curves (both maximum principal values) are shown in

figure D.4a and the approximate modulus of elasticity associated with the materials is given in figure D.4b.
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(b) Young’s modulus vs true strain

Figure D.4: Comparison between the muscle matrix model and other models for the tongue in the literature

[293, 111, 244, 86, 28]. The result for the matrix model used in this work is shown in black.

From both table D.1 and the before-mentioned figures, there appears to be a large variation in the constitu-

tive relationships used to describe the passive tongue. Not only does the account of the zero strain Young’s
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D.3 ‚ PASSIVE TISSUE MODEL

modulus vary significantly, but the nature of the material nonlinearity and the degree to which it stiffens

with increased strain varies as well1. The result is an order-of-magnitude discrepancy of large-strain stiffness

for the tested models. It should be noted that although the model of Gérard et al. [86] shown in figure D.4,

derived from indentation tests of a human tongue, it was the most compliant model and shows little simi-

larity to the rest of the cited literature. However, it appears to be consistent with the experimental analysis

conducted by Van Loocke et al. [286] for freshly harvested tissue, as seen in figure D.5. Similar results for

fresh tissue were also observed by Buchaillard et al. [29]. This is due to Gérard et al. [86] assuming zero mus-

cle activation for the fresh tissue whereas models with a stiffness modulus in the range of 6kPa assume that

some residual muscle activation is present [29]. The effect of the sample freshness on the results obtained in

experimental analysis is discussed by Van Ee et al. [282] and Van Loocke et al. [286]. Furthermore, it has been

observed in tests performed by Van Ee et al. [282] and Van Loocke et al. [288] that strain-rate and the effects

of cyclic loading are factors that should be considered.

Ultimately, material parameters for the muscle matrix were chosen such that the small strain stiffness was

6.2kPa, which aligned with a number of the models in literature. The notion that this figure includes the

effect a minimal degree of muscle activation is taken into account in the development of the neural model

presented in chapter 7. The rate of increase of stiffness at small strains was set to mimic that of the Yeoh

material model of Buchaillard et al. [28], which resulted in the models correlating well at large strains. The

resulting stiffness modulus at `0.4 strain was 23.78kPa and at ´0.5 strain was 13.84kPa.

D.3.2 Passive component of muscle fibre

In addition to providing a valid range of parameters for the matrix model, the experimental data in Van

Loocke et al. [286] was used as an initial benchmark against which the parameters chosen for the PE were

validated. Figure D.5 demonstrates that the increase in stiffness shown when a transverse fibre family is

added is in the range of that observed in the fresh and aged tissue. The transverse fibres are placed in tension

as the uniaxially displaced tissue is compressed, while axially orientated fibres are loaded in compression

and have no effect on the tissue stiffness. The resulting stiffness curve demonstrates that the small strain

stiffness is comparable to that of aged tissue. However, at large strains the reinforcing effect of the PE, which

is superimposed on that of the muscle matrix, is similar to that seen in fresh tissue samples.

Further comparison can be made to the combined experimental results of Gordon et al. [91] and ter Keurs

et al. [274] that outlined the nature of the PE. In figure D.6, the combined effect of the PE and the length-

dependent part of the CE are plotted as a function of fibre stretch. This result represents iso-velocity elonga-

tion of a muscle fibre at maximum activation, and is presented as a fraction of the peak isometric force. The

chosen parameters for the PE make this element more compliant than that presented by ter Keurs et al. [274],

but the overall effect of a highly increased material stiffness at high strains is attained.

D.3.3 Fibre volume fraction

From equation 5.6c, it is ascertained that the stress generated within the muscle fibre components is directly

proportional to their volume fraction. In appendix D.3.2 the parameters chosen for PE, as listed in table 6.4,

were selected and validated for the volume fraction value specified for the tongue in section 6.5.1.

1 This large variation in experimental data has been noted by Van Loocke et al. [286].
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Figure D.5: Comparison between fresh and aged experimental compression data from [286] and the muscle

model. Legend: AX – axial alignment of fibre with deformation; TV – transverse alignment of

fibre with deformation.
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Figure D.6: Combined response of active and passive components of muscular tissue, namely fp ` fL
c . Com-

parison of the described functions with data from ter Keurs et al. [274] for the passive tissue

response, combined with active muscle response described in Herzog and Ait-Haddou [101] and

Gordon et al. [91], demonstrates that the overall response of the tissue is correct. The response of

the PE used here is slightly less stiff than that described by ter Keurs et al. [274].

Figure D.7 demonstrates that both the stress and stiffness properties of passive tissue are, as expected, linearly

dependent on the fibre volume fraction and that the correct configuration of the PE parameters is paramount

to the accuracy of the model. It is observed in figure D.7b that the variation in tensile stiffness of the muscular

tissue relative to that of the muscle matrix (7.26kPa at `0.1 strain) due to the effect of fibre volume fraction

is significant at even very low-strains. The stiffness of the PE increases exponentially in comparison to the

underlying tissue matrix.
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Figure D.7: The change in stress response and stiffness properties of passive fibrous tissue resulting from

modification of the fibre volume fraction.

D.3.4 Number and orientation of reinforcing fibres

In the tongue, numerous fibre families meet and interact throughout its volume. The number of muscle

groups present at each point and their orientation with respect to one another alter the passive properties of

the tissue. Figure D.8 illustrates the effect of the number of fibre families and orientation on the tensile and

compressive stress-strain behaviour of muscle tissue.
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(b) Tension

Figure D.8: Passive tissue stiffening due to fibre reinforcement. Axially-aligned fibres produce a large stiff-

ening effect in tension, but no passive resistance during compression. Transversely aligned and

off-axis fibres add some stiffness during compression as they are placed in tension during the de-

formation. Legend: AX – axial alignment of fibre with deformation; TV – transverse alignment

of fibre with deformation; OT – fibres are orthogonal. The angle given is that of the fibre with

respect to transverse plane.
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For the case of compression shown in figure D.8a, the addition of fibres in the transverse direction results in

reinforcement of the material while fibres aligned in the axial direction do not affect the material stiffness. Due

to the nature of the deformation during compression, it was observed that orientating fibres at up to 60˝ to

the axial direction resulted in negligible reinforcement. The addition of a single fibre family in the transverse

plane has the effect of stiffening the tissue, but because the reinforcement is in the direction of only one of the

transverse axes, the tissue remains compliant. Adding an extra transverse fibre family orthogonal to the first

results in the stiffest tissue measured in compression. When an axial fibre is added, the tissue becomes more

compliant but remains stiffer in comparison to when only one transverse fibre was present. The latter two

scenarios demonstrate that the volume fraction for each family is reduced as the overall fibre volume fraction

remains constant regardless of the number of muscle groups present.

Under tension, the incorporation of fibres off the transverse plane results in stiffening of the tissue. It is

clear that the closer the alignment of the fibres to the direction of deformation, the greater the resistance to

motion due to the stiffness of the PE. By comparing the cases having only 1 fibre group and 3 orthogonal fibre

groups, the former being aligned with the deformation and the latter having one fibre family aligned with

the deformation, the effect of the fibre volume fraction can again be observed. The volume fraction occupied

by the axial fibre in the latter case is
1

3
of that of the former case, reducing the effective stiffness of the tissue

in the axial direction. As the PE offers no resistance in compression, the cases where only fibres transverse to

the direction of motion exist result in the same material stiffness of that of having just the matrix present.

In summary, it is evident that the alignment of the fibres with respect to the load affects the degree to which

the PE is loaded. Under certain loading configurations, the fibre volume fraction may not play a significant

role in the effective stiffness of the tissue. According to figure D.8b, tensile uniaxial loading of tissue with a

single fibre family at 45˝ with a φf “ 0.7 results in little added stiffness due to the PE at strains of up to `0.15.

The result of this is that the volume fraction has a more significant effect in altering the effective stiffness of

tissue in scenarios in which the tensile principal direction of deformation is aligned with the fibre direction.

D.4 Active tissue model

The implementation of the model for internal fibres is compared to examples presented by Martins et al.

[171]. The slight differences between the results shown below and the benchmark results can be attributed to

differences in the implementation of the muscle models.

D.4.1 Internal fibres

A 10 ˆ 5 ˆ 1mm geometry discretised into 1mm3 cells was used to reproduce half of the grid used by Martins

et al. [171]. Muscle fibres were aligned in the direction of longest grid edge. The symmetry of the model in the

fibre direction was accounted for, thus replicating the square grid used in the benchmark. The plane-strain

response was ensured by enforcing zero displacement in the third direction. The muscle matrix parameters

were altered to be consistent with the used by Martins et al. [171] (b “ 23.46, c “ 379.52Pa). The activation

parameters were set to T s
0 “ 1, τR “ 20ms, τR “ 200ms. The time-step size used in the first example is

∆t “ 50ms, while the second required a smaller step size of ∆t “ 20ms.

Isometric contraction of the muscle group demonstrates that the activation function is correctly evaluated and
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that the fibre constitutive model produces correct results. In this example, no displacement of any bound-

aries is allowed. In figure D.9a, it was observed that the rise and fall of the activation level is exponentially

increasing and decaying. The temporal history of the total axial stress, depicted in figure D.9, has a similar

shape to the neural history.
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Figure D.9: Replication of the isometric contraction test described by Martins et al. [171]. The result in black

was produced using an implementation of the exact muscle relationships used by Martins et al.

[171] and correlates well with that which they documented.

Isotonic contraction, where the generated contractile force in a muscle is sufficient to overcome an applied

traction, is demonstrated in the same geometry. One of the 5mm sides is planarly constrained, while a axial

stress is applied, in the reference configuration to the opposite surface. The stress is linearly increased to its

maximal value of 4805.26Pa over the first second, and is maintained for an additional 2.5s. At t “ 1s, a neural

stimulus is provided to the muscle and maintained for a duration of 1s, after which the stimulus is removed.

The stimulus and resulting activation histories are illustrated in figure D.10a and the axial stress and strain

shown in figure D.10c.
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Figure D.10: Replication of the isotonic contraction test described by Martins et al. [171].

Both of the problems outlined above match the benchmark results shown in the literature and demonstrate
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that the muscle model functions as expected2. The inconsistency in the stress-time results are primarily due

to the differences in the materials models, as both the length and velocity relationships of muscle tissue, as

well as the account of fibre volume-fraction, differs between the two approaches.

2 An interesting catastrophic instability was observed for this problem, namely that the slightest perturbation of the solution in

the Newton-Raphson algorithm caused solution divergence. This highlighted an unforeseen difficulty when using this model in

geometrically regular grids and a regular arrangement of embedded fibres. Ultimately, this problem required the employment of a

direct solver to ensure a very high precision linear step.
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E. CRITIQUE OF THE CONSTRUCTED

MODELS

In order to critically evaluate the accuracy of the model as a whole, a summary of the anatomical inconsis-

tencies and nuances observed in portion of the VHP dataset pertaining to this research is presented. Where

aspects of the underlying physiology extracted from the images are ignored or modified, a full account of

these modifications and a motivation for the changes is given.

E.1 Anatomical inconsistencies of the VHP dataset

The most disadvantageous aspect of the dataset is that the tongue is in an unnatural position, clearly illus-

trated in figure 8.4. Not only does the tongue rest forward in the mouth, but it is clamped between the

teeth on its blade and the sides, causing the tip of the tongue to protrude forward to the lips. The frenulum

and underside of tongue blade are also in contact with the mandible and portions of the superior surface of

the tongue are in contact with the hard palate. These points needed to be corrected in order for a functional

model to the produced, as the position of the tongue is inconsistent with that observed in vivo while breathing

naturally.

Upon extraction of the thyroid cartilage, it was discovered that only one of the processes to which the oropha-

ryngeal constrictors attach was present.

E.2 Accuracy of geometry reconstruction

When considering the accuracy of the geometric reconstruction, four elements need be addressed. They are:

1. Constraints inherent in imaging, modelling and simulation software.

2. The process used for reconstructing the tissue structures from imaging data.

3. The process of developing the fluid domain from the solid model.

4. Fundamental problems with the data source.
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E.2.1 Software constraints

The complex nature of the HUA together with limitations in the software required that the model be sepa-

rated into several files to reduce the overall number of masks used to segment the data. A similar limitation

was met when extracting the muscle fibre data. The reconstructed dataset could as a result not be viewed in

its entirety during construction, hindering the detection of errors early in the reconstruction process.

An additional pertinent point is that the FE software was restricted to hexahedral elements, so that detail

in certain parts of the model had to be removed. Furthermore connectivity constraints forced some regions

to have an unnecessarily fine mesh. Finally, since only linear elements can be read in by the software, the

description of tissue boundaries was relatively coarse in places.

E.2.2 Modelling tissue structures

The following section outlines the geometric differences between the voxel data extracted from the images

and the three-dimensional model that was recreated from the data. Since the solid and fluid models are

distinct but interlinked, the details for the solid model, which is the focus of the work, is presented first with

the additional points that pertain only to the fluid model introduced afterwards.

As the underlying histological data for the tongue is linked to its configuration with in the imaging data, the

extent to which alterations could be made to the solid geometry were limited. Some muscles that are not

expected to have an impact its movement, such as the PG and infrahyoid muscles, were ignored entirely. The

teeth, which constrained the tongue, were removed leading to the presence of small gap the tongue and hard

palate, as well as the the mandible. Deformation in the apex and blade of tongue caused by the clamping of

the teeth on the tongue was removed. The anterior sublingual gland and frenulum in-between the tongue

and the mandible was ignored in order to prevent initial contact between the tongue and the mandible, as

well as to reduce the degree of constraint present on the anterior surface of the tongue. The lateral sublingual

glands have been represented as soft tissue within the tongue body but their connectivity between the tongue

and mandible is not maintained, again to relax the constraint placed on the tongue. Since it is expected that

these tissues are relatively compliant, their removal in order to simplify the model was thought to be valid.

The hyoid was reshaped so that it was less tapered at its posterior margin and its lesser horn removed, facili-

tating the construction of a high-quality mesh for this part of the model. The anatomy between the epiglottis,

thyroid cartilage and hyoid bone was treated as though entirely composed of adipose tissue. Although the

epiglottis is known to rest on a fat pad, there exist several bursae and other tissues in this region as well. The

ligaments in the region of the hyoid and thyroid, as well as the thyroid and hyoepiglottic membranes, were

also ignored. Although these thin collagenous structures, when in tension, serve to constrain the motion of

parts of the anatomy, their influence on the gross movement of the tongue was considered to be insignificant

enough to warrant their current representation1.

Furthermore, the surface of the hard palate was displaced marginally so as to introduce a gap between it and

the tongue thereby removing in the initial contact between these two entities. The thyroid process was added

to the right hand side of thyroid cartilage and the laryngeal prominence was removed.

1 The influence of these parts could be included using a boundary energy model, such as that described by Javili and Steinmann

[130].
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Due to their thin structure, the presence of image artifacts and the perspective of the dataset, the pharyn-

geal constrictors were difficult to discern in the axial and reconstructed images. However, it did appear that

regions of the airway were collapsed, which is a distinct possibility as no muscle activity is present to en-

sure airway patency. Based on the anatomical literature, a structure representing the constrictors was recon-

structed, but indications are that this may call for revision. This is discussed in more detail in appendix E.2.4

below. The apparent inner wall of the collapsed oropharynx is contrasted in figure E.1 against that of the re-

constructed geometry. Since various muscle groups, such as the SG penetrate the oropharyngeal walls, these

regions of penetration were ignored, patched up and considered to be a part of the pharyngeal constrictors.

VV

EE

(a) Midsagittal view of the pharynx

(b) Axial view of the velopharynx (plane V-V)

(c) Axial view of the epiglottal region (plane E-E)

Figure E.1: View in Mimics c⃝ of the inner wall of the oropharyngeal constrictors, with the position of the

epiglottis (pink) and soft palate (blue). The apparent true position of the inner wall (red) along

with final (green) reconstructed geometries indicated. The degree to which the reconstruction

could be made to accurately represent the oropharyngeal constrictors was constrained by the

length of time required to produce each geometry and, ultimately, mesh requirements.

E.2.3 Developing the fluid domain

The solid model was used as a basis for the fluid model, and the changes in the solid geometry therefore re-

flect directly on the construction of the fluid model. However, further deviations from the extracted imaging

data was required to produce an adequate model. A slight alteration of the cheeks, which now serve as the

enclosing boundary for the air in the oral cavity, was performed to remove contact between them and the

tongue. The region lateral and anterior to the tongue where the sublingual glands are present was removed

from the free-stream, thereby reducing the flow area in the oral cavity. Due to their complexity and the dif-

ficulty in extracting accurate details from the imaging data, the nasal passage was simplified substantially

PAGE E–3



E ‚ CRITIQUE OF THE CONSTRUCTED MODELS

using the method presented in Zhang et al. [325], and the sinuses totally ignored. Although the presence

of external muscles in region nasopharynx was accounted for, it is likely that the complex geometry in this

region hasn’t been fully represented. Furthermore, the effect that the muscles emanating from the tongue

body have on the impingement of flow has not been considered.

E.2.4 Data source problems

Many of the inaccuracies in the construct of the fluid model can be attributed to source of the data, specifically

that a solid model or description of the fluid boundaries was required before the volume of dataset that

makes up the airway could be inferred. Ideally, accurate MRI or CT data should have been be used to directly

extract the description of the airway instead of the inverse method employed in this work. However, because

of the low-resolution of the associated MRI or CT data, this information was not explored. Consequently

the methodology used to construct the fluid model and its associated simplifications resulted in a several

unrealistic features appearing in the model.

As is shown in section 8.8.2, several issues pertaining to the airway CSA exist. The transverse profile of the air

gap in the oral cavity is incorrect when in a state of inhalation. This is due to the blockage of the oral cavity

by the tongue, restricting the flow area over the superior surface of the tongue. Additionally, because the

teeth were removed, the area though which fluid would move in the lateral regions of the mouth is excessive.

Due to the coarse representation of the nasal passage geometry and the position of the pharyngeal walls, the

CSA of the nasal passage does not truly match the anatomical literature as well as would be hoped. The CSA

of the lower nasopharynx and the velopharynx appears quite large. The lateral distance between uvula and

nasopharynx as reconstructed appears larger than usually illustrated in literature; for example, see [2, p771].
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F. ISOLATED ACTIVATION OF

INDIVIDUAL TONGUE MUSCLES

(a) Midsagittal view (b) Coronal view

Figure F.1: Isolated contraction of the GGa (FFMR 5%)

(a) Midsagittal view (b) Transverse view

Figure F.2: Isolated contraction of the GGa (FFMR 5%)
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(a) Midsagittal view (b) Transverse view

Figure F.3: Isolated contraction of the GGm (FFMR 5%)

(a) Midsagittal view (b) Transverse view

Figure F.4: Isolated contraction of the GGp (FFMR 5%)

(a) Midsagittal view (b) Coronal view

Figure F.5: Isolated contraction of the GH (FFMR 5%)
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(a) Midsagittal view (b) Coronal view

Figure F.6: Isolated contraction of the HG (FFMR 5%)

(a) Midsagittal view (b) Transverse view

Figure F.7: Isolated contraction of the IL (FFMR 5%)

(a) Midsagittal view (b) Coronal view

Figure F.8: Isolated contraction of the MH (FFMR 5%)
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(a) Midsagittal view (b) Coronal view

Figure F.9: Isolated contraction of the SG (FFMR 25%)

(a) Midsagittal view (b) Coronal view

Figure F.10: Isolated contraction of the SH (FFMR 5%)

(a) Midsagittal view (b) Transverse view

Figure F.11: Isolated contraction of the SL (FFMR 5%)
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(a) Midsagittal view (b) Transverse view

Figure F.12: Isolated contraction of the TV (FFMR 5%)

(a) Midsagittal view (b) Transverse view

Figure F.13: Isolated contraction of the VT (FFMR 5%)
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G. PARAMETRIC STUDY OF NEURAL

MODEL

The neural control model has a number of physical and non-physical parameters associated with it. These

include variables utilised to reduce computational cost and some which affect the interpretation of the cost-

benefit to contracting specified muscle groups. Below, a discussion on how these parameters influence the

accuracy of the result is presented. These results were applied in the development of a more accurate model

for later use.

Not demonstrated is the effect of the evaluation rate, that is the number of time-steps between those at which

the neural model is utilised to produce a new active muscle set. In a previous iteration of the model, it

was determined that, for the given time-step size, using the same active set for a single additional time-step

reduced the computational time (naturally, by a factor of 2) without a proportional loss in accuracy of the

result. Similarly, the time discretisation, itself not immediately associated with the neural model, was chosen

to ensure that accurate results were maintained under all scenarios to be tested.

G.1 Muscle selection factor

Introduced in section 7.4.3, the value used to filter out unlikely candidates for muscle activation, cL, has a

great influence on the duration of each simulation. The bounding values for cL were chosen to provide a

balance between computational efficiency and the overall solution results. It was determined that a greater

likelihood for inaccuracies in the calculation of ¯̄λf exist as the gravitational orientation moves towards the

upright position, hence the need for a lower value of cL in this regime.

In terms of the effectiveness of this method, a typical reduction of the order of 50% of the simulation time was

achieved when utilising equation 7.24 in conjunction with equation 7.25 versus having no filter (i.e. cL “ 0)

on the active muscle set. Considering the base problem used thus far, the average number of evaluations

required for each occasion the neural model reconfigured the muscle state was reduced from 62 when cL “ 0

to 26 for cL “ 0.995.

Comparison of figures 11.1a, 11.2b and G.1 indicates that, qualitatively, the response of the muscles with

and without filtering was very similar. The intensity of the contraction in each muscle group remained

consistent between both simulations, although it was noted that the HG was predicted to have a slightly
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greater contractile force when no filtering is used, suggesting that it is prematurely forced to be inactive by

the algorithm. However, the overall quality of the position control is effectively identical between the two

cases. In this single case, the GGp is noted to contract with slightly greater intensely at the time of peak

pressure due to the increased contraction of the HG. Nevertheless the overall trends in terms of magnitude

of contraction for the GG constituents remain similar.
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Figure G.1: The response of the model using the described filtering technique was very similar to that ob-

tained when no filtering of the active muscle set occurred.

The trade-off between simulation time and loss of accuracy in terms of positional and muscular control

caused by introducing equation 7.25 appears worthwhile. The recruitment of additional muscles does slightly

affect the predicted activation patterns of the airway dilators, but this effect is small and will likely be further

diminished when energy-conservation is included as an optimisation parameter in the neural model.

G.2 Number of control points

A secondary fine net for the control points was evaluated to determine whether more control points should

be utilised in further studies. The coarse distribution, shown previously in figure 8.11, was used as a base

to which supplementary points were added. Figure G.2 depicts the finer distribution of the control points

on the upper and rear surfaces of the tongue. 10 points were positioned on the upper surface, 7 were placed

on the rear and 5 on the transitioning edge between the two surfaces. The position of these points remained

regular in order to prevent the GA from favouring any point on the tongue.

From the data shown in Table G.1, it can be deduced that including additional control points decreases the

effectiveness of the neural model in maintaining the position of the control points on the midsagittal plane.

For all but PD, an increase in the mean displacement was recorded. With the contraction of each muscle

group affecting a large region of the tongue, perturbations in the contraction of some muscles now have a

greater influence on the result. Consideration of the additional points reduced the effectiveness of the control

model as it was required to make a compromise in the position of more points with no control point being

more important than another.

From the results, it is clear that an increase in number of control points does not necessarily produce more op-

timal control of the tongue. It can be concluded that the number of control points used should be minimised,
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Figure G.2: The position of all of the control points in the fine net.

Table G.1: The effect that altering the control point distribution has on the mean displacement measured on

the midsagittal plane. The mean displacement, in mm, was computed from displacement data

recorded at the prescribed control points over the course of the simulation. The listed measure-

ment points were common between the two tested distributions.

Control point
Distribution

Coarse Fine

PA 1.86 2.24

PB 1.31 1.59

PC 0.65 0.71

PD 0.87 0.74

but chosen with care. They should still be distributed in such a manner as to ensure that the overall config-

uration of the tongue body remains physiologically realistic while the points that are important to control

should be explicitly evaluated and considered by the model.

G.3 Weighting values of control points

The weights assigned to each control point provide the facility to prescribe their significance on the solution of

the GA. Increasing the value from unity is the artificial equivalent to clustering them in a region of geometry.

As the position of the tongue tip, PA, has been found to be most difficult to control due to its flexibility, the

weight at this point was increased from 1 to 3. The weight at PC was also altered to the same value as to

prevent the GA from focusing excessively on the control of PA and to maintain a good result at this position.

Table G.2 provides a summary of the influence of the described weights on the mean displacement solution

at the various control points on the midsagittal plane. As desired, the result of increasing weight at PA is that

the mean displacement at this position was reduced by 32%. The associated modification of the weight at the

tongue posterior, PC , produced a 21% improvement in result. There was however a reduction in the ability

to maintain the position of the upper mid-surface of the tongue, denoted by PB , with the mean displacement

increasing by 14%.
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Table G.2: The mean displacement, in mm, at control points on the midsagittal plane due to the influence of

changing the weighting values at PA and PC .

Control point
Weight wp

1 2 3

PA 1.86 1.41 1.27

PB 1.31 1.36 1.5

PC 0.65 0.55 0.51

PD 0.87 0.81 0.75

From this data, it was concluded that the combined increase in the weights at PA and PC to a value of 3 was

an effective measure at improving the functioning of the optimisation algorithm.

G.4 Energy minimisation parameters

Finally, to introduce the requirement of work rate minimisation, the objective weights are altered from the

trivial combination t1, 0u. From this we will determine optimal parameters and as well as their influence on

the displacement result. As we expect the displacement result to decrease in quality, it must be ensured that

the resultant oscillations of the tongue surface remained within physiologically realistic bounds.

In figure G.3, the sequentially increasing importance of the work rate has little effect on the position control

of the tongue until a critical threshold is exceeded. At this point, the displacement control in the first loading

cycle is not obtained. However, at later loading cycles the displacement solution is significantly better and

remains within reasonable limits. An increase in the movement of the rear of the tongue is detected, although

again it remains within realistic limits.
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Figure G.3: Position control of control points on the tongue surface under a change in objective function

weights. Extreme differences are only observed when the weighting value on the energetic ob-

jective functions was increased to 0.5.

However, evaluation of the response of the GG demonstrates that the solution obtained for the weights

t0.5, 0.5u is very much inconsistent with the other results. As can be seen in figure G.4, bias towards energy

conservation leads to a steady but plausible reduction of the muscle activity for all tested cases except one. For

PAGE G–4



G.4 ‚ ENERGY MINIMISATION PARAMETERS

the former scenarios, the peak FFMR is reduced in the GGp, while the GGm attained a lower zero-pressure

FFMR. In the problem case, the FFMR of both of these muscles increased to a certain value at t “ 3s which

remained roughly constant thereafter. This indicates two things, the first being that the response on the GG,

which is known to be linked to the epiglottal pressure, is no longer physiologically consistent. Secondly, and

more interestingly, although the FFMR result is non-realistic, the displacement solution after t “ 3s remained

reasonably good, indicating that other muscle groups must be working collectively to oppose the applied

load.
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Figure G.4: Muscle response due to a change in objective function weights. The response of the GG fur-

ther indicates that the threshold for reasonable results lies with a work rate weighting factor of

between 0.4 ´ 0.5.

Taking a slightly conservative stance on the results, we consider the weight factors t0.7, 0.3u, respectively for

displacement and energy functions, to be ideal for use for the tongue model. This choice remains within the

bounds that produce physiologically realistic and repeatable results, while allowing some buffer for unfore-

seen influences. This introduces flexibility that may be required when evaluating scenarios not evaluated in

this part of the parametric study. To further justify this choice, a brief discussion on the statistical character-

istics of the heuristic model is presented below.

Figure G.5 demonstrates that, with this choice of weighting parameters, the displacement score range of the

tested population is balanced, while many of the tested solutions can be characterised as energy-efficient

muscle configurations. This results in an overall score solution that is Gaussian and uni-modal, with a wide

standard deviation.

The maintenance of bias towards low-scoring solutions is demonstrated in figure G.6. 85% of the solutions

chosen as the best choice for each time-step had a displacement solution with a score of less than 0.25. Util-

ising this data in conjunction with that shown in figure G.5, it can be concluded that although fewer very

high-quality solutions were evaluated, the results remain near optimal for the chosen objective weights.

It appears that, for this model, the wide standard deviation of the overall tested population is a necessity to

ensure that an adequate displacement solution is obtained on average. As seen in figure G.7, increasing the

weight of the energy function reduces the standard deviation of the overall population score, indicating that

solutions with good displacement characteristics are tested less frequently. This is a logical development as

the GA will tend to converge on a solution that utilises less muscle action and thus focus more evaluations

on solutions with these characteristics.
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Figure G.5: Histogram of scores of the evaluated population accumulated over the entire duration of a sim-

ulation. Weights for the displacement and work rate objective functions were 0.7 and 0.3 respec-

tively. Although the distribution of the displacement scores is relatively even across all bins, the

linear combination the objective functions results in normal distribution with a large standard

deviation.
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Figure G.6: Histogram of scores of the best genome accumulated over the entire duration of a simulation.

Weights for the displacement and work rate objective functions were 0.7 and 0.3 respectively.

The chosen best-solutions generally represent globally excellent results in comparison to the test

population distribution given in figure G.5.
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H.1 Simulation configuration

The CFD simulations were conducted using the commercial software FLUENT c⃝. The full steady state

Navier-Stokes equations were solved using the FVM. Due to the mixed flow conditions expected at the

varying range of volume flow rates, a turbulence model that is capable of correctly representing flow in

the laminar, transitional and fully turbulent flow regimes was required. As the computational expense of

LES, DES and DNS turbulence models was too great, a RANS model was deemed ideal to approximate the

turbulent effects on the flow field. In particular, the k-ω SST model, incorporating low Re corrections, was

selected as it has been shown to give a solution close to that obtained when using LES [177]. It provides a

reasonable solution to transitional and fully turbulent flow while also accommodating fully laminar flow1.

Higher order solution schemes were utilised to ensure solution accuracy. The Semi-Implicit Method for

Pressure-Linked Equations (consistent) (SIMPLEC) algorithm was used for pressure-velocity coupling. The

pressure and momentum fields were solved using the Pressure Staggering Option (PRESTO!) and Monotone

Upstream-Centered Schemes for Conservation Laws (MUSCL) algorithms respectively. The Quadratic Up-

stream Interpolation for Convective Kinetics (QUICK) algorithm was used to solve all turbulence equations.

The final model of the fluid domain was comprised of 1.25 million hexahedral and polyhedral cells, with 50%

of the them located in the pharynx, 26% in the oral cavity, 10% in the trachea and the rest distributed in the

nasal passages2. A no-slip condition was applied to all walls, which were considered rigid and stationary.

The boundary conditions at the inlets and outlets varied slightly according to the nature of the breathing and

the part of the breathing cycle being simulated. At the outlet, namely a section of the trachea, a prescribed

velocity condition was used to induce a specified volume flow rate through the domain. The mass-flow

between each branch of the bronchus was split according to the CSA of the boundary surface. The region

of the airway open to the atmosphere was represented as a pressure boundary condition. Depending on

1 Validation studies confirmed that simulations within the laminar flow regime conducted with and without the k-ω SST turbulence

model enabled produced similar results.
2 A brief validation study determined that this cell count and distribution resulted in sufficiently accurate results. Three meshes were

evaluated, the other two comprised a total of 0.53 million and 0.78 million cells respectively. Both nasal and oral inspiration were

simulated at 5L/min and 60L/min using each mesh. Using the finest grid as the benchmark result, at a low flow rate the difference

in predicted pressure drop between the inlet and outlet was, in the worst-case, 2% and the difference in the maximal velocity

within the domain was 3%. At a high flow rate, the worst-case relative difference in pressure and velocity measurements increased

to 3.5% and 3.5% respectively. As the results between coarse and fine grids matched both quantitatively and qualitatively, it was

determined that the chosen grid was sufficiently fine for the use in this work.
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whether nasal or mouth breathing was modelled, the appropriate boundary condition was changed to a

wall BC to ensure that fluid only flowed through those boundaries that matched the breathing type being

simulated3.

H.2 General flow characteristics

The general flow characteristics of oral and nasal breathing are presented. The differences between inspira-

tion and expiration are discussed for each case. This information supplements the discussion in section 12.1.

H.2.1 Nasal and oral inspiration

The velocity profile shown in figure H.1a illustrates the high velocity regions in the vestibules (nose open-

ing) and larynx. Jetting over the posterior surface of the uvula due to the flow constriction is visible. This

phenomenon is more pronounced at high flow rates and matches the observations reported in the literature

[56, 67, 147, 195]. The retroglottal jet is not strongly developed in this scenario but has been resolved fully in

other studies [56].

(a) Nasal inspiration (b) Oral inspiration

Figure H.1: Magnitude of velocity on the midsagittal plane during inspiration at 60L/min.

Figure H.2 depicts velocity contours on coronal sections through the nasopharynx. It was observed that the

majority of the fluid mass moves through the medial part of the septum. Towards the posterior third of the

nasal passages, air moves into the superior metus and to a lesser extent the inferior metus as the height of the

septum is reduced; a flow feature that has also described by Zhang et al. [325]. Upon entering the choanae,

the fluid exiting the narrow nasal passages interacts with the surrounding stagnant air and the flow stream

3 The drawback to this approach is that the static pressure on the blocked inlet wall will be non-atmospheric, which is a non-realistic

approximation.
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Figure H.2: Coronal sections of the nasopharynx showing fluid velocity during nasal inspiration at 60L/min.

becomes more diffusive as it moves towards the velopharynx. Overall, the velocity and pressure profiles in

the nasal cavity were qualitatively comparable to the steady simulations shown in [325, 147].

The midsagittal velocity profile for oral inspiration, shown in figure H.1b, was qualitatively similar in low

and high flow rate cases. As the tongue blocked the entrance to the mouth, the air moved over its upper

surface as well as around its sides. In these images, this was partially illustrated by the stagnation of the air

at the tongue tip and the downwards flow from this point. Weak flow jetting was visible between the inferior

surface of the uvula and the tongue. The uvula assisted in deflecting the air past the epiglottis and down the

pharynx. At lower flow rates, the jet was directed partially onto the epiglottis. At higher flow rates, the jet

appeared less well directed due to the secondary effects and the interaction of this jet with the lateral flow

moving around the sides of the tongue. The air moving past the uvula remained attached by the Coanda

effect and was directed over the epiglottis, a phenomenon also reported in the literature [131].

The flow profile though the buccal cavity is presented in figure H.3. It was very apparent in this image that a

large quantity of the air moving through the mouth is channelled along the sides of the tongue. As previously

mentioned, this is not necessarily an accurate representation of the normal physiology in humans, but may

approximate a condition where the tongue has lifted and deflected back in the mouth. The gap between

the tongue and the hard palate was very narrow, while the gap between the sides of the tongue and the

inner walls of the cheeks was much wider. This resulted in the latter being the preferred flow path. As

large quantities of air moved around the side of the tongue, it was deflected laterally inwards towards the

pharynx centreline by the palatopharyneus (PP). The air originating from the superior and lateral surfaces of

the tongue then mixed in the pharynx.

Flow acceleration at the larynx was clearly visible for both cases in figure H.1. Inferior to the larynx, a

recirculation zone appeared in the trachea. This flow structure was also noted in the literature [196] and is

explained by the laryngeal jet that is developed (as shown in [131]). The flow structure in trachea, at a set

flow rate, appears independent of orifice of inhalation.

Full-field streamlines (not shown) indicated that, for the case of nasal inspiration, the flow path is very similar

at high and low flow rates. The secondary flow pattern of the pharyngeal vortex, as depicted in the literature

and shown in figure H.4a, was visible in these cases. Two recirculation loops, lateral to the main flow channel

and constrained by the pharyngeal walls, were present during nasal breathing. These vortices were generated
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Figure H.3: Coronal sections of the buccal cavity showing fluid velocity during oral inspiration at 60L/min.

by the shear stresses set up by the channel of air moving down the pharynx acting on the stagnant air in the

lateral cavities of the pharynx. Additional vortices were present between the tongue and epiglottis. All of

these turbulent structures were quite weak and therefore did not produce a significant effect on the pressure

field. It was observed that the laryngeal jet was stronger at high flow rates than low flow rates.

(a) Nasal inhalation (b) Oral inhalation

Figure H.4: Streamlines of airflow in the pharynx for inspiration at 60L/min.

During oral inspiration, flow around the sides of tongue, clearly seen in figure H.4b, had higher momentum at

a higher flow rate and thus resisted changes in direction as it moved into the open passage of the oropharynx.

The flow therefore entered the pharynx more directly, while at a low flow rate the air moved around the

region of the lateral sublingual glands. However, the turbulence and mixing in the oropharynx was stronger

at higher flow rates. Two large vortices were again present in the pharynx, but their location and cause

differed considerably in comparison to nasal breathing. The vortices were generated in the wake of the

tongue, as the flow moved over the top and sides of it. These turbulent phenomena produced little effect on

the low pressure zone that had developed in this region due to losses in the buccal cavity. It is clear from

this image that there was quite a lot of transverse movement of air, which had a significant impact on the

development of the flow field in the pharynx.
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H.2.2 Nasal and oral expiration

The midsagittal flow profile for nasal exhalation is shown in figure H.5a. Apart from a small contribution

from flow directed into the oral cavity due to attachment to the epiglottis, the fluid was near stationary in

the oral cavity. Fluid flowing from the velopharynx was jetted into the nasopharynx due to the constriction

present there. The flow detached from surface of the uvula and was directed towards the superior meatus of

the nasal cavity.

(a) Nasal expiration (b) Oral expiration

Figure H.5: Magnitude of velocity on the midsagittal plane during expiration at 60L/min.

Figure H.5b demonstrates that during oral expiration the flow was attached to the epiglottis and directed

towards the oral cavity due to the curvature of the epiglottis. However, some fluid was forced into the

velopharynx and recirculated in this region. From the nature of the velocity field at the outlet, it was evident

that a significant proportion of the fluid mass moved laterally around the tongue body and not over its upper

surface. This physiological inaccuracy has been previously discussed in terms of its effect on the nature of

inhalation simulated in this work.

H.3 Pressure distribution on the soft palate

Figure H.6 illustrates the pressure distribution on the soft palate. When simulating inspiration though the

nose, the soft palate experienced a decreasing pressure profile in the posterior direction over its upper surface

while the pressure on the surfaces bounding the oropharynx were near constant. As the superior surface

remained a high pressure region, and from a sagittal viewpoint the upper surface has a strong curvature, it

was predicted that the air-induced resultant force would move the uvula in the superior direction. However,

due to the complex geometry and pressure distribution, this could only be confirmed through further studies

using FEA. The pressure drop expected due to the velopharyngeal jet was not large enough to be captured.
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H ‚ CFD STUDY OF UPPER AIRWAY FLOW

(a) Nasal inhalation (b) Oral inhalation

(c) Nasal expiration (d) Oral expiration

Figure H.6: Air-pressure distribution on the soft palate for breathing at 60L/min.

During oral inspiration, the posterior pressure drop was continuous along the oropharyngeal surfaces of the

soft palate. Static pressure was recovered in the velopharynx and the posterior surface of the uvula and

superior surfaces of the soft palate were exposed to a constant pressure. With the posterior oropharyngeal

parts of the soft palate being a low pressure region, the resulting force acting on the pliable regions of the

soft palate might have been expected to move the uvula towards the tongue. However, the complex pressure

profile on the inferior soft palate made this scenario somewhat more difficult to predict as the anterior of the

oropharyngeal soft palate remained a high pressure zone.

The soft palate experiences vastly different pressure distributions for expiration with the two breathing mech-

anisms. During nasal expiration, the lateral and inferior surfaces in the oropharynx experience a high pres-

sure, while the pressure drop across the velopharynx results in a low pressure region on the superior surface.

A significant pressure gradient was observed across the length of the uvula. In contrast, the inferior and

lateral surfaces of the uvula are at low static pressure relative to the superior surface during oral expiration.

In both cases, the high pressure region at the uvula tip was clearly visible.
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H.3 ‚ PRESSURE DISTRIBUTION ON THE SOFT PALATE

Further discussion

The data collected during the CFD study also demonstrated that during high flow rate inhalation the pha-

ryngeal walls are subject to very low pressures due to losses in the buccal cavity or nasal passages. Without

stiffening of the pharyngeal constrictors, this may lead to movement of these tissues which would further ex-

acerbate any loss of patency caused by the position of the tongue alone. The pressure distribution on the soft

palate is complex and requires further examination in order to predict its motion due to the airway load. An

initial study of the movement of the soft palate is presented in appendix I.2, and demonstrates that inhalation

through either the nose or mouth tends to displace the uvula forward towards the tongue. This is counter-

intuitive for the case of nasal inhalation, and merits further examination preferably using time-dependent

FSI analysis. For oral inspiration, this may result in further losses of airway patency and lower epiglottal

pressures.
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I. FURTHER OPPORTUNITIES FOR

RESEARCH

I.1 Complete soft and hard tissue model of HUA

Following on from the discussion in section 8.5, figure I.1a shows the full reconstruction of the tissue of

the HUA from the volumetric dataset. Both soft and hard tissues within the region of interest, and which

define the extents of the fluid model, are represented. The full micro-histology of the tongue, soft palate and

oropharynx is described. The overall goal of creating such a model was to simulate the full deformation of

the soft tissues under airway loading conditions, using both FSI and simplified airway pressure models.

To this end, a frictionless surface-to-surface contact model described by Wriggers [313], accompanied by

a custom contact detection model, was implemented to cater for the expected contact between the tongue

and the soft and hard palate, as well as the lateral tissues under conditions of large deformation. Figure I.2

illustrates the results of a benchmark example, demonstrating the effectiveness of the implemented contact

model. Furthermore, the neural model was extended to allow for the simultaneous computation of optimum

muscle activation patterns in isolated and non-interacting muscle groups. Subject to the hypothesis that the

muscles keeping each tissue group stationary in space resulting in no contact between them, the motion of

the tongue, palate and oropharynx remain largely independent. Ultimately, the computational cost of using

the full HUA geometry was too large for use within the current computational framework, and focus was

placed on the use of models of reduced complexity.

I.2 Soft palate model

A model of the soft palate is illustrated in figure I.1b. The model includes the pliable region of the palate

that attaches to the posterior surface of the hard palate, as well as the portion of muscular tissue that forms

the palatoglossal arch. Visible is a complex of muscular fibres that exist in the glandular soft tissue of the

soft palate, prominent amongst which is the musculus uvulae (UV) which moves the tip of the uvula and the

palatopharyneus (PP) that extends through the palatoglossal arch. The external muscles of the levator veli

palatini (LVP) and tensor veli palatini (TVP) are shown, as are their origins.

PAGE I–1



I
‚

F
U

R
T

H
E

R
O

P
P

O
R

T
U

N
IT

IE
S

F
O

R
R

E
S

E
A

R
C

H

(a) Complete upper airway soft and hard tissue model

UV

LVP

TVP

PP

PU

(b) Soft palate (posterior isometric view)

Figure I.1: Details of full HUA tissue model

P
A

G
E

I–
2



I.2 ‚ SOFT PALATE MODEL

(a) Initial position (b) Displaced solution with verti-

cal stress distribution

Figure I.2: Surface-to-surface contact of two hard discs

Numerous models, of varying complexity, simulating the uvula and soft palate are represented in the lit-

erature [143, 17, 41, 266, 298, 300, 328], as is histological data extracted from experiments [144, 21, 112, 39].

In figure I.1b, the tissue of the soft palate is represented by a mixture of adipose and muscular tissue such

that the small strain stiffness modulus of the material is comparable to the (wide) range presented within

the literature (approximately 7200Pa). From the data presented in Hamans et al. [96], which presents with a

volume fraction of interstitial and connective tissue in the uvula, it was assumed that the volume fraction of

muscular fibres in the soft palate was φf “ 0.15. To pre-strain the tissue, the applied body force was 1.075

times that of gravity in the vertical direction.

Zero-displacement constraints were applied to surfaces that exist on the interface between the hard and soft

palates, as well as to the inferior surface of the palatoglossal arch where the PP inserts into the floor of the

oropharynx. The presence of adipose and other tissues surrounding the oropharynx and lateral portions of

the soft palate are crudely approximated using traction BCs. This tissue adjacent to the palatopharyngeal and

lateral pharyngeal constrictor muscles represents the buffer between these muscle and the external muscles of

the tongue amongst other anatomical features. In actuality, these tissues would be separated by facial layers

that would allow them to slide over one another (tangential motion), but normal motion would be presented

due to the contact pressure present between the two parts. However, this reality cannot be accounted for in

this stylised model. The interior surfaces of the model exposed to the air existing in the oropharynx, along

with the uvula and a portion of the superior surface, experience forces due to air present in the velopharynx

and nasopharynx.

Modal analysis was conducted using an implementation of the inverse iteration (power) method [226] to

validate the chosen boundary conditions and material characteristics. Figure I.3 shows the first two modes

computed for the problem. The captured harmonics appear physiologically plausible as the PP which lines

the oropharynx is highly constrained while the palate roof is free to move. A combination of the FE mass

lumping method, compliant passive material parameters and the prescribed BCs likely lead to an underpre-

diction of the primary frequency of vibration. The second to fifth harmonics (14.7 ´ 21.8Hz) were within the

lower range excited during palatal snoring [202, 157, 220] but well below the spectrum of other frequencies

active during snoring. Gravitational orientation was not seen to change the vibration characteristics of the

passive soft palate (˘1Hz).

The effect of gravitational and pressure loading on the movement of the passive soft palate was examined

PAGE I–3



I ‚ FURTHER OPPORTUNITIES FOR RESEARCH

(a) Primary mode: Sagittal planar oscillation

(7.1Hz)

(b) Secondary mode: Axial planar oscillation

(14.7Hz)

Figure I.3: Harmonics of the soft palate under (upright) gravitational load.

in brief. The pressure distribution extracted from CFD simulations for the inhalation condition were applied

to the surface of the soft palate exposed to the airway. Figure I.4 shows the result of this analysis. It was

observed that, under no airway loading, the passive palate undergoes very large deflections in the posterior

and superior directions when gravity is orientated in the supine direction. This is illustrated visually in

figure I.5 for the supine position. Interestingly, the uvula is displaced in the same direction when in the prone

orientation. This is due to the location of its centre-of-mass, which is inferior to the palatal arch. Compared

to the supine orientation, the magnitude of these zero-pressure movements decreases considerably as the

orientation moves towards upright. Overall, the measured displacements are significantly larger than that

predicted by Sun et al. [266] (0.004mm) but were of the order of those given by Wang et al. [298] (maximum

of 6.7mm).
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(b) Inferior displacement

Figure I.4: Displacement of the uvula apex due to gravitation and pressure loading

Upon inhalation through either the nose or mouth, the general trend was for the uvula to displace anteriorly

and inferiorly. This contradicted the initial prediction made in section 12.1.1, that nasal inspiration would

result in the uvula displacing superiorly and posteriorly. Fascinatingly, the lack of tissue pre-strain in the

upright orientation leads to differing anteroposterior motion when inhalation is through different orifices.

Overall, the movement was largest at high flow rates and when gravity acted in the supine direction. Since

static CFD simulations were used to generate the pressure field and did not take into account the initial large

deformations of the palate, these results appear questionable and represent first approximations only. At

inspiration through the nose, it is expected that the reduction in CSA of the velopharynx associated with
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I.2 ‚ SOFT PALATE MODEL

(a) Supine orientation (b) Prone orientation

Figure I.5: Displacement on midsagittal plane of soft palate due to gravitational loading.

the posterior movement of the uvula when in the supine orientation would have a significant effect on the

pressure distribution over the soft palate.

Figure I.6 shows the displacement of the uvula after the pressure distribution extracted at a fixed flow rate for

various breathing scenarios was applied. Comparison with the equivalent no-load case shown in figure I.5a

visually demonstrates the forward movement of the uvula predicted during inspiration. However, the very

large displacements predicted during the exhalation phase illustrate the need for a more precise material

parameters to be developed for use in the model. Providing a more accurate distribution and volume fraction

of muscle fibres and adjusting their general tone would result in uvula and palatal stiffening. This would

resist such large movements and also increase the primary frequency of vibration.

(a) Oral inhalation (b) Nasal inhalation

(c) Oral exhalation (d) Nasal exhalation

Figure I.6: Displacement on midsagittal plane of soft palate due to gravitational (supine orientation) and

pressure (60L/min) loading.
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I ‚ FURTHER OPPORTUNITIES FOR RESEARCH

I.3 Neural model

In an extension of the example given in section 7.5.1, the question as to whether the neural model could

track a temporally changing goal position was explored. Under no pressure loading, the goal point
‹

P was

moved in a prescribed manner and the GA was tasked with finding the combination of neural signals that

kept the free-corner of the block P nearest
‹

P (with no energetic considerations). Figure I.5 shows the relative

position of P to
‹

P as the goal point moved along different trajectories. It is evident that the model was able to

keep distance between the goal and actual positions of the block corner low at all times when the movement

of the goal changes smoothly in time. However, introducing a sudden direction change demonstrated a

shortcoming of the activation model used resulting in the appearance of a reflexive delay. It can be seen that,

given the set of activation parameters, the recovery time taken to reattain the goal position is of the order

of 0.1s. This further motivates the desirability of enhancing the model linking the neurological signal to the

muscle activation.
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Figure I.7: Displacement on midsagittal plane of soft palate due to gravitational loading.
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