
Modelling of iron-filled magneto-active polymers with

a dispersed chain-like microstructure

Prashant Saxenaa,b, Jean-Paul Peltereta, Paul Steinmanna

aChair of Applied Mechanics, University of Erlangen–Nuremberg,
Paul-Gordan Straße 3, Erlangen 91052, Germany

bCenter for Integrative Genomics, University of Lausanne,
Génopode Building, 1015 Lausanne, Switzerland

Abstract

Magneto-active polymers are a class of smart materials commonly manufactured
by mixing micron-sized iron particles in a rubber-like matrix. When cured in the
presence of an externally applied magnetic field, the iron particles arrange them-
selves into chain-like structures that lend an overall anisotropy to the material. It
has been observed through electron micrographs and X-ray tomographs that these
chains are not always perfect in structure, and may have dispersion due to the con-
ditions present during manufacturing or some undesirable material properties. We
model the response of these materials to coupled magneto-mechanical loading in
this paper using a probability based structure tensor that accounts for this imper-
fect anisotropy. The response of the matrix material is decoupled from the chain
phase, though still being connected through kinematic constraints. The latter is
based on the definition of a ‘chain deformation gradient’ and a ‘chain magnetic
field’. We conclude with numerical examples that demonstrate the effect of chain
dispersion on the response of the material to magnetoelastic loading.

Keywords: Nonlinear magnetoelasticity; anisotropy; chain dispersion; finite element
method

1 Introduction

Magneto-active polymers (MAPs) are smart materials in which the mechanical and the
magnetic properties are coupled with each other. Typically these elastomers are composed
of a rubber matrix filled with magnetisable iron particles. The magnetisable particles are
usually between 1-5 µm in diameter and kept between 0-30% by volume of the entire
mixture [4, 27, 36, 39]. The application of an external magnetic field causes the magneti-
sation of iron particles and the resulting particle-particle and particle-matrix interactions
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lead to phenomena such as magnetostriction and a change in the overall material stiff-
ness [16, 66]. These elastomers have received considerable attention in recent times due
to their potential uses in a variety of engineering applications, such as variable stiffness
actuators [6] and vibration suppression by energy absorption [39, 70].

Mathematical modelling of the coupling of electromagnetic fields in deformable con-
tinua has been an area of active research in the past. In particular, we note the con-
tributions of Landau and Lifshitz [42], Livens [43], Tiersten [64], Brown [9], Pao and
Hutter [51], Maugin and Eringen [48], Maugin [46], and Eringen and Maugin [22]. The
advancement of MAP (along with electro-active polymer) fabrication in the laboratory
setting, and hence their wider availability in recent decades, has led to another surge in
research in this area. Furthermore, as opposed to metallic alloys and ceramics, newly de-
veloped polymer based materials can undergo very large deformations. This has resulted
in focused explorations in the nonlinear regime of their response.

Recent developments in this field, based on the classical works mentioned above,
are largely due to Brigadnov and Dorfmann [8], Dorfmann and Ogden [19, 21], and
Kankanala and Triantafyllidis [37]. The former’s (Dorfmann and coworkers) work is
based on the definition of a ‘total’ energy density function that implicitly accounts for
magnetic and coupled energy stored in the polymer; while the latter’s approach is to
minimise a generalised potential energy with respect to internal variables, thereby yielding
the relevant governing equations and boundary conditions. It is shown that any one
of the magnetic induction, magnetic field, or magnetisation vectors can be used as an
independent input variable and the other two obtained through constitutive relations.
Based on these formulations, several nonlinear deformation problems have been studied
by, for example, Dorfmann and Ogden [20], Otténio et al. [50], Bustamante et al. [13],
and Danas et al. [16]. Steigmann [62] and Maugin [47] have discussed several important
issues concerning the modelling of coupled magneto-electro-elasticity using continuum
approaches. Further newer developments pertain to using implicit theories [12] and rate-
dependent theories [55, 56] for modelling more general effects, but are beyond the scope
of this work.

MAPs can exhibit isotropic or anisotropic properties depending on the kind of fabri-
cation process used. If the elastomers are cured in the presence of an external magnetic
field, the magnetisable particles tend to form chain-like arrangements lending an overall
directional anisotropy to the material. Experiments on such materials [66] have shown
that anisotropic MAPs tend to have stronger coupling with the external magnetic field
and are therefore more likely to be used in engineering applications.

The modelling of soft elastomers with a directional anisotropy is a subject of research
in its own right. For example, averaging approaches have been adopted by Galipeau
and Ponte Castãneda [24] and Yin et al. [71] to capture the microscopic behaviour of
aligned magnetisable particles in soft carrier. In contrast, Rudykh and Bertoldi [52] di-
rectly represented the chain-type microstructure using a laminate structure. Another
common method of incorporating anisotropy, and that adopted within this work, is by
using structural tensors. As described by Spencer [61] and Zheng [72], these can be cou-
pled with the right Cauchy–Green deformation tensor to obtain scalar invariants through
symmetry arguments. The invariants are then used as an independent input in the en-
ergy density function defining the material properties. This method has been used by,
among others, Shams et al. [58] for modelling pre-stressed elastic solids, Holzapfel and
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Gasser [31] for modelling fibre-reinforced composites, and Bustamante [10] and Danas
et al. [16] for modelling MAPs with a directional anisotropy. One needs to choose at least
a minimum number of invariants for completeness [18] and take care while performing
energy decomposition for numerical implementation of incompressible materials [54]. An-
other approach towards this problem is by decoupling the response of the matrix and the
anisotropic part, thereby considering different kinematic variables and energies for each.
This has been used by Klinkel et al. [40] in the case of anisotropic elasto-plasticity and
by Nedjar [49] for modelling anisotropic visco-elasticity. Based on this latter approach,
Saxena et al. [56] recently presented a model for nonlinear magneto-viscoelasticity of
anisotropic MAPs.

Recent experiments have shown another rather important feature in the microstruc-
ture of anisotropic iron-filled MAPs, namely that the particle chains formed due to the
curing of an MAP under an external magnetic field are not all aligned in the same di-
rection. The chains combined together have an average alignment in the direction of the
magnetic field applied during curing, but individual chains do have an observable dis-
persion that may possibly influence the macroscopic response of the material. Modelling
of this phenomenon and demonstration of the effect of chain dispersion on the overall
macroscopic response of an MAP are the main contributions of this paper. We note
that, mathematically, this phenomenon is similar to the dispersion of fibres in biological
tissues as is discussed in the papers by Gasser et al. [25], Holzapfel and Ogden [32] on
the modelling of blood vessels, and Federico and Herzog [23] on articular cartilage. In
these works, the authors considered a generalised structure tensor based on a probability
density function that accounts for the dispersion of embedded fibres.

Numerical methods, and in particular finite element analysis, have been widely used
in the study of magneto-sensitive materials in order to understand and predict both
their micro- and macroscopic behaviour. The formation of particle chains in magneto-
rheological fluids, effectively characterising the pre-cured state of an MAP, has been inves-
tigated by Ly et al. [44] and Simon et al. [60]. For the case of solid carriers, Boczkowska
et al. [5], Chen et al. [15] and Vogel et al. [68] have studied the movement of mag-
netic particles in elastomers. A coupled scalar magnetic potential formulation has been
utilised to predict both the magnetic and deformation fields at the macroscopic level,
where consideration of the surrounding free space is necessary. For example, Kannan and
Dasgupta [38] adopted this approach to study the magnetostrictive behaviour of MAPs
and their application in mini-actuators, Zheng and Wang [73] investigated the magneti-
sation of a ferromagnetic plate and Bermúdez et al. [3] demonstrated its application to
electromagnets. Furthermore, the shear behaviour of a magnetised block in free space
has been considered by Marvalova [45] and Bustamante et al. [13], the latter of which
also investigated its contractile behaviour.

The remainder of this paper is arranged in the following manner: In section 2 we
outline the fundamental aspects of continuum mechanics pertaining to magnetoelasticity.
Following this, in section 3 we provide a motivation and the mathematical formulation of
the dispersed magnetisable particle chains that comprise the MAP microstructure. We
then detail a decoupled energy model for quasi-incompressible media in section 4, and
the associated energy model for the free space. In section 5, we briefly present the finite
element formulation used for performing the numerical computations. Analytical and
finite element examples, used to demonstrate the behaviour captured by the constitutive
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model, are presented in sections 6 and 7 respectively. Lastly, some concluding remarks
are presented in section 8.

2 Kinematics, balance laws and boundary conditions

We consider a body composed of a quasi-incompressible magnetoelastic material which,
in a state of no stress and no deformation, occupies the reference configuration B0 with
a boundary ∂B0. In this state, the free space surrounding the body is denoted by S0

and the entire domain by D0 = B0 ∪ S0. On a combined mechanical and magnetic static
loading, the body occupies the spatial configuration Bt at time t with the boundary ∂Bt.
The corresponding configurations for the free space and entire domain are denoted by St

and Dt = Bt ∪ St respectively. A deformation function ϕ maps the points X ∈ D0 to the
points x ∈ Dt by the relation x = ϕ(X). The deformation gradient tensor is given by a
two-point tensor F = ∇0ϕ, ∇0 being the differential operator with respect to X. The
determinant of F is given by J = detF such that the condition J > 0 is always satisfied.
For the case of an incompressible material, as presented in section 6, the constraint J ≡ 1
is enforced.

It is assumed that the material is electrically non-conducting and that there are no
electric fields. Let σ be the symmetric total Cauchy stress tensor [19] that takes into
account magnetic body forces, ρ be the mass density, fm be the mechanical body force
per unit deformed volume, a be the acceleration, b be the magnetic induction vector in
Dt, and h be the magnetic field vector in Dt. The balance laws are expressed as [9, 48]

∇ · σ + fm = ρa, σt = σ in Bt; ∇× h = 0, ∇ · b = 0 in Dt. (1)

Here ∇ denotes the differential operator with respect to x in Dt. Equation (1)1 is the
statement of balance of linear momentum, equation (1)2 is the statement of balance of an-
gular momentum, equation (1)3 is a specialisation of the Ampère’s law, and equation (1)4
is the statement of impossibility of the existence of magnetic monopoles. The magnetic
vectors are connected through the standard constitutive relation [48]

b = µ0[h+m], (2)

where m is the magnetisation vector in Bt (and vanishes in St) and µ0 is the magnetic
permeability of vacuum. If σmech is the purely mechanical stress tensor, then it is related
to the total stress σ by the relation

σ = σmech +
1

µ0

[
b⊗ b− 1

2
[b · b]i

]
+ [m · b]i−b⊗m. (3)

Here i is the second order identity tensor in Dt and use has been made of expression for
the magnetic body force as f = [∇b]t ·m [22, and included references].

The total (second) Piola–Kirchhoff stress and the Lagrangian forms of h,b, and m
are defined by using the pullback operations [21, 46]

S = JF−1 · σ · F−t, H = Ft ·h, B = JF−1 · b, M = Ft ·m. (4)

4



The above relations are used to rewrite the balance laws as

∇0 ·
(
S · Ft

)
+ ρfm = ρa, St = S in B0; ∇0 ×H = 0, ∇0 ·B = 0 in D0, (5)

along with the relation for magnetic quantities

J−1C ·B = µ0 [H+M] . (6)

At a boundary ∂Bt, which can be the bounding surface of the magnetoelastic body
or a surface of discontinuity within the material, the jump conditions

n× JhK = 0, n · JbK = 0, (7)

need to be satisfied by the magnetic vectors. Here n denotes the unit outward normal to
∂Bt, and J•K = [•]out− [•]in represents jump in a quantity across the boundary. The total
Cauchy stress must satisfy

σ · n = ta + tm, (8)

where ta and tm are, respectively, the mechanical and magnetic contributions to the
traction per unit area on ∂Bt. In the reference configuration, the boundary conditions at
the boundary ∂B0 are given by

N× JHK = 0, N · JBK = 0, F · S ·N = tA + tM , (9)

where N is the unit outward normal to ∂B0 and related to n through Nanson’s formula
n da = JF−t ·N dA, where da and dA represent the infinitesimal current and reference
areas, respectively. The vectors tA and tM are the mechanical and magnetic contributions
to the traction per unit area on ∂B0.

3 Magneto-active polymer microstructure and chain

dispersion

In order to understand the particle chain alignment and resulting anisotropy in magneto-
active polymers, we analyse the electron micrographs of MAP samples documented by
Jolly et al. [36] and Boczkowska and Awietjan [4]. It is observed that the MAPs cured
under the effect of a magnetic field develop a preferred direction due to the alignment of
iron particles in chain-like formations. Under (presumably) near ideal curing conditions,
the chains are quite uni-directional as can be seen in figure 2(a) of [4]. However, if one
varies the matrix material or the particle volume fraction (figures 1(c) and 2(c,d,e) of
[4]), we observe that the particle chains do have an observable dispersion.

To reaffirm this observation, samples of magneto-active polymers were prepared and
their microstructure subsequently analysed using X-ray computed tomography. Iron par-
ticles coated with silicon-dioxide were mixed with ELASTOSILr and the mixture was
cured for sixteen hours in the presence of a magnetic field created by permanent magnets.
The volume fraction of iron particles was taken to be 2% and 10%. Dispersion of the
formed particle chains is quite prevalent in the samples shown in figure 1. Overall, it
is hypothesised that the final microstructure was influenced by a multitude of factors
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(a) (b)

Figure 1: (a) SEM image of an MAP with 10% iron particles by volume. Non-uniform
local directions of alignment of the particle chains are represented by red arrows. (b)
Computer Tomograph of 5 stacked samples of an MAP with 2% of iron particles by
volume. The non-uniform distribution and alignment of the particle chains, examples of
which are marked by red arrows, is clearly visible.

present during the curing stage of sample preparation. Examples of these influences in-
clude the gel point and viscosity of the matrix during its fluid state and the strength and
the duration of the magnetic field to which the uncured material was exposed.

In all of the cases described above, the collection of chains have an effective direction
along the applied magnetic induction. However, all the chains individually do not align
in such a way as shown in the right example in figure 2. Rather, as is shown in the middle
sketch, the particle chains may be imperfectly formed and non-uniformly aligned. This is
an important aspect of the material microstructure and should be modelled appropriately.

p
cure

Parameters

Figure 2: Depiction of the possible range of particle microstructures present in a magneto-
sensitive elastomer cured under a uniform magnetic field. Depending on the curing con-
ditions, the end-product may be isotropic (left), have perfect particle-chain formation
(right) or a state between the two extremes.

Gasser et al. [25] and Holzapfel and Ogden [32] have modelled fibre dispersion in
anisotropic soft matter with application to blood vessels. The fibres in biological tissues,
though with an average alignment in a preferred direction, have an observable dispersion
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that significantly affects their mechanical properties. A similar analysis for collagen
fibre distribution in bone cartilage has been performed by Federico and Herzog [23]. In
the following text, we use similar concepts to approach the problem of particle-chain
distribution in magnetorheological elastomers.

A unit direction vector M is characterised by means of Eulerian angles θ ∈ [0, π] and
φ ∈ [0, 2π] in a three-dimensional coordinate system {e1, e2, e3} such that

M(θ, φ) = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3. (10)

If the unit vector M(θ, φ) represents the direction of a particle chain, then the overall
generalised structure tensor G for the material can be defined as

G =
1

4π

∫

ω

ξ(M(θ, φ))M(θ, φ)⊗M(θ, φ) dω, (11)

where ω is the unit sphere, dω = sin θ dθ dφ and ξ is a probability density function
defining orientation of the particle chains such that ξ(M) is normalised according to the
relation

1

4π

∫

ω

ξ(M(θ, φ)) dω = 1. (12)

In the ideal case of absolute anisotropy when all the particle chains are aligned along just
one direction (say M = e3), then the probability density function ξ approaches the limit
of a Dirac-Delta and the structure tensor G reduces to

G = M⊗M. (13)

For true material characterisation, the probability density function ξ can be nu-
merically approximated using experimental data obtained through three-dimensional
computerised-tomography (CT) scans of the material specimens. For some simple cases,
it can also be approximated through two-dimensional electron-microscopy (SEM or TEM)
images. In this paper, for the sake of simplicity, we employ symmetry arguments and
assume a transversally isotropic distribution of particle chains around an axis such that
the probability ξ simply depends on the angle θ with no dependence on φ. Following [25]
we assume the function ξ to be given by the π-periodic von Mises probability distribution
function

ξ (θ) = 4

√
b

2π

exp (b [cos 2θ + 1])

erfi
(√

2b
) . (14)

where the parameter b ∈ [0,∞]. This causes the structure tensor G to reduce to the
following simple form

G = κI+ [1− 3κ]M⊗M (15)

as has been shown by Gasser et al. [25]. HereM is the direction of average chain alignment
and κ ∈ [0, 1/3] is a parameter given by

κ =
1

4

π∫

0

ξ(θ) sin3θ dθ, (16)
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and describes the ‘degree of anisotropy’ of the material. The parameters κ and b have a
one-to-one mapping through the relations (14) and (16). A visual interpretation of the
presented dispersed microstructure model and its parameters, specifically in the context
of a magneto-sensitive material, is provided in figure 3. Figure 4 presents 3-D plots of
the von Mises probability distribution as given in equation (14) for different values of the
dispersion parameter κ.

M

κ “

1

3
κ “ 0.05 κ “ 0

Figure 3: Description of material structure assumed by the material model. For a given
average chain directionM, the upper and lower limiting values for κ respectively represent
an isotropic and perfectly transversely isotropic material. For the isotropic case, this may
imply that either the particles do not form chain-like structures, or the particle chains
are completely randomly orientated. An intermediate value of κ assumes that partial
organisation of particle chains towards M has taken place during curing.

κ = 0κ = 0.05κ = 0.1κ = 1/3

Figure 4: Probability density distribution plotted on a unit sphere according to equa-
tion (14) corresponding to two extreme and two intermediate values of the dispersion
parameter κ.

4 Constitutive modelling

In general, we consider the total magnetoelastic energy of the material to depend on the
deformation gradient, the magnetic field vector and the structure tensor, that is

Ω0 = Ω0(F,H,G). (17)

It can be shown that, using symmetry arguments, the dependence on F is simplified
through a dependence on the right Cauchy–Green deformation tensor C = Ft · F. For
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this case, the total Piola–Kirchhoff stress and the magnetic induction are given by the
constitutive relations [21]

S = 2
∂Ω0

∂C
, B = −∂Ω0

∂H
. (18)

4.1 Decoupled energy model

In order to take into account the response of the magnetoelastic chains, we follow the
approach presented in a recent paper [56] that is based on the modelling of fibre-reinforced
solids by Klinkel et al. [40]. We define a chain-deformation gradient Fc such that

Fc = F ·G = κF+ [1− 3κ]F ·A. (19)

where we have defined A = M ⊗ M. Indeed, we note that if one defines the chain
deformation gradient as an average over chains in all the directions

Fc =
1

4π

∫

ω

ξ [F ·M]⊗M dω, (20)

we arrive at the expression in (19) on using the condition (11). In the limit κ → 0 for a
purely anisotropic material with no dispersion, this reduces to Fc = F ·A thus capturing
the one-dimensional deformation in the chain anisotropy direction. We note that here
and henceforth, a superscript ‘c’ refers to the quantities associated with the chain phase.

For future use, we define Cc = [Fc]t · Fc, also expressed as

Cc = G ·C ·G = κ2C+ κ[1− 3κ][C ·A+A ·C] + [1− 3κ]2[C : A]A, (21)

and present the identity

∂Cc

∂C
= G⊗G = κ2

I4 +
κ

2
[1− 3κ]

[
I⊗A+ I⊗A+A⊗I+ I⊗A

]
+ [1− 3κ]2A⊗A. (22)

Here we define the non-standard tensor products of two second order tensors as [P⊗Q]ijkl =
PikQjl and [P⊗Q]ijkl = PilQjk, and I4 = [I⊗I+ I⊗I] /2 is the fourth order symmetric
identity tensor.

The Lagrangian magnetic field in the average chain direction is given by

H

c = G ·H = κH + [1− 3κ][M ·H]M, (23)

and we note the identity
∂Hc

∂H
= G. (24)

The dependence of the total energy density on the structure tensorG is now considered
implicitly through Cc and Hc. Thus Ω0 = Ω0(C,Cc,H,Hc) and the Piola–Kirchhoff
stress is given in the case of incompressibility by

S = 2
∂Ω0

∂C
+ 2κ2 ∂Ω0

∂Cc
+ 2κ[1− 3κ]

[
A · ∂Ω0

∂Cc
+

∂Ω0

∂Cc
·A
]
+ 2[1− 3κ]2

[
∂Ω0

∂Cc
: A

]
A− pC−1,

(25)

while the magnetic induction is given as

B = −∂Ω0

∂H
−G · ∂Ω0

∂Hc . (26)
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4.2 Dealing with material incompressibility

The energy density function is initially decomposed into two parts, namely those at-
tributed to the matrix and the particle chain, such that

Ω0 = Ωmat
0 (C,H) + Ωc

0(C,Cc,H,Hc). (27)

However, following the discussion by Sansour [54], only the matrix part is decomposed
further into volumetric and isochoric parts [59] such that

Ω0 = Ωvol
0 (J) + Ω̃iso

0 (C̃,H)︸ ︷︷ ︸
Ωmat

0

+Ωc
0(C,Cc,H,Hc). (28)

A multiplicative split of the deformation gradient into volumetric and isochoric contribu-
tions

F = F̂ · F̃ with F̂ := J
1

3 I, F̃ := J−
1

3F (29)

is also assumed [59], from which the isochoric part of the right Cauchy–Green deformation

tensor is given as C̃ = F̃t·F̃. Such decompositions are typically utilised not only to capture
the decoupled behaviour of rubber-like materials but also to support their numerical
modelling. In view of the material description given by equation (28), for the case of a
quasi-incompressible material equation (18)1 is transformed to

S = 2

[
∂Ω̃iso

0

∂C̃
:
∂C̃

∂C
+

∂Ωc
0

∂C

]
− pJC−1 (30)

with the hydrostatic pressure defined as

p = −∂Ωvol
0 (J)

∂J
. (31)

4.3 Dealing with surrounding free space

In addition to the stored energy in the material due to elastic deformation and mag-
netisation, an additional energy contribution arises due to the presence of the magnetic
field permeating and surrounding the elastic body. Depending on its constitutive model
and consequent magnetisation, this may be a negligible quantity inside the elastic body.
However, this energy must certainly be accounted for in the free space as it quantifies
its Maxwell stress and free space induction. We therefore formally write the total stored
potential energy Ω0 as

Ω0 (C,H) = W0 (C,H) +M0 (C,H) (32)

where W0 is the elastic and magnetic energy stored in the elastic body and M0 =

−1

2
µ0JC

−1 : H ⊗ H is the energy stored in the free space [67]. It should be noted

that, for the examples shown later, the free space energy within the elastic media is
ignored and the above reduces to

Ω0 (C,H) ≡ W0 (C,H) if X ∈ B0 and Ω0 (C,H) ≡ M0 (C,H) if X ∈ S0. (33)
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5 Finite element formulation

Under the assumption of quasi-static conditions and the presence of no free-currents, we
denote the displacement by u = x−X and define a scalar magnetic potential1 Φ [7, 41].
The referential magnetic field, being curl-free, is related to the magnetic potential (a
fictitious quantity) by

H = −∇0Φ (34)

with the following conditions on the solid boundary and truncated far-field boundary
∂S∞

JΦK = 0 on ∂B0, Φ = Φ on ∂S∞. (35)

We define a total potential energy functional

Π = Πint +Πext (36)

on the domain D0, composed of a magnetoelastic subdomain B0 and the surrounding free
space S0. The total internal potential energy is given by

Πint =

∫

D0

Ω0 (C,H) =

∫

B0

W0 (C,Cc,H,Hc) +

∫

S0

M0 (C,H) , (37)

where, from equations (28) and (32), W0 denotes the total potential energy per unit
volume due to the magnetoelastic material’s deformation and magnetisation, while M0

quantifies the magnetic energy stored in the free field. The total external potential energy
is

Πext = −
∫

B0

u · b0 −
∫

Γt
0

u · tA−
∫

∂Sb
∞

Φ [BA ·N∞], (38)

where b0, tA represent the referential mechanical body forces and surface tractions re-
spectively, and BA is the magnetic induction prescribed on the far-field boundary ∂Sb

∞
.

Using the principle of stationary potential energy, the equilibrium solution to equa-
tion (36) can be determined. The stationary point is that at which all directional deriva-
tives of the total potential energy disappear. The expression for the Gâteaux derivative
of the total energy is

δΠ (u, δu,Φ, δΦ) = δuΠ (u,Φ) + δΦΠ (u,Φ)

=
d

dǫ
Π (u+ ǫδu,Φ)

∣∣∣∣
ǫ=0

+
d

dγ
Π (u,Φ + γδΦ)

∣∣∣∣
γ=0

= 0,
(39)

1An alternative to the scalar potential formulation, which is used due to its simple numerical implan-
tation, is the vector potential formulation [11, 41, 57] for which a relationship between B and a vector
potential field A, namely B = ∇0 ×A, is assumed.
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which yields δΠ = δΠint + δΠext. Using equations (33) and (37), the variation of the
internal potential energy is expressed concisely as

δΠint = δuΠ
int + δΦΠ

int =

∫

D0

δE : S−
∫

D0

δH ·B, (40)

and that of the external potential energy is

δΠext = −
∫

B0

δu · b0 −
∫

Γt
0

δu · tA−
∫

∂Sb
∞

δΦ [BA ·N∞]. (41)

Here we define the variations of the Green-Lagrange strain tensor, the deformation gra-
dient and magnetic field respectively as

δE = sym
[
FT · δF

]
, δF = ∇0δu, δH = −∇0δΦ. (42)

As is detailed by Bustamante and Ogden [11] for the case involving both a solid and
free-space domain, the above collectively represents the equivalent weak form of the
divergence-free condition for both the stress and magnetic induction (equations (1)1,4)
for the magneto-elastostatic case. Furthermore, the continuity of the normal traction
and magnetic induction (given in equation (7)2) at the material interfaces is also embed-
ded within this formulation. However, it remains to be ensured that the compatibility
conditions for the deformation and the continuity of tangential magnetic field (equation
(7)1) are satisfied.

As the material laws are nonlinear, an iterative procedure such as the Newton-Raphson
method must be utilised to determine the stationary point. The nonlinear system of
equations can be linearised using a first-order Taylor expansion about the current solution.
Linearisation of equation (40) with respect to the motion and scalar magnetic potential
renders the contributions [63, 69]

∆δΠint = ∆u

[
δuΠ

int + δΦΠ
int
]
+∆Φ

[
δuΠ

int + δΦΠ
int
]
, (43)

=

∫

D0

[
sym

[
δFT ·∆F

]
: S+ δE : H : ∆E− δH ·P : ∆E

]

+

∫

D0

[
−δE : PT ·∆H−∆H ·D ·∆H

]
,

(44)

with ∆ (•) representing value increments. The material tangents, namely the referential
elasticity tensor, the fully-referential magneto-elasticity tensor and the rank-2 magnetic
tensor, are defined as

H = 4
∂2Ω0 (C,H)

∂C⊗ ∂C
, P = −2

∂2Ω0 (C,H)

∂C⊗ ∂H
,

P

T = −2
∂2Ω0 (C,H)

∂H⊗ ∂C
, D = −∂2Ω0 (C,H)

∂H⊗ ∂H
.

(45)

Overall, the linear Taylor expansion of equation (40), with the use of equation (43),
can be expressed as

0 = δuΠ +∆uδuΠ+∆ΦδuΠ

0 = δΦΠ +∆uδΦΠ +∆ΦδΦΠ.
(46)
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5.1 Space discretisation

The displacement and scalar magnetic potential fields are spatially discretised by intro-
ducing a finite element basis

u (X) =
∑

I

uINI (X), Φ (X) =
∑

I

ΦIN I (X) , (47)

∇0u (X) =
∑

I

uI∇0N
I (X), ∇0Φ (X) =

∑

I

ΦI∇0N
I (X) . (48)

where NI and N I are, respectively, the vector-valued and scalar-valued shape functions
corresponding to degree-of-freedom I. This description of the spatial discretisation allows
for the discrete system to be presented in a manner that parallels its implementation in
the finite element framework. Furthermore, the Galerkin finite element method is adopted
such that the resulting system is square and symmetric. The variation and linearisation
of the discretised fields follows as

δu (X) =
∑

I

δuINI (X), δΦ (X) =
∑

I

δΦIN I (X) , (49)

∆u (X) =
∑

I

∆uINI (X), ∆Φ (X) =
∑

I

∆ΦIN I (X) . (50)

The variations vanish on the Dirichlet boundaries; that is to say that δu = 0 on ∂Bϕ

0

and δΦ = 0 on ∂SΦ
0 . As the free-space by definition has no elastic degrees-of-freedom

and offers no impediment to the movement of the solid media, we further impose the
condition that δu = 0 on S0\Γds

0 , where Γds
0 = S0 ∩ B0 denotes the surfaces of the solid

body exposed to the free-space.
Noting that the resulting equation must hold for all arbitrary variations δuI , δΦI , a

system of linear equations can be resolved. Following from equation (46), the discrete
form of the algebraic equations to be solved at time t and Newton iterate n is

[
Kuu KuΦ

KΦΦ KΦΦ

] [
∆u

∆Φ

]
=

[
fu
fΦ

]
⇒ K ·∆d = f = −r (51)

where d = [u Φ]T collectively denotes the values of the field variables and r the residual
vector. The corresponding solution update is given by

dn+1 = dn +∆dn, (52)

and contributions to the stiffness matrix and right-hand side vector from degrees-of-
freedom I, J are

KIJ =

∫

D0

[[
∇T

0N
I · ∇0N

J
]
: S+

[
FT · ∇0N

I
]
: H :

[
FT · ∇0N

J
]

+∇0N
I ·P :

[
FT · ∇0N

J
]
+
[
FT · ∇0N

I
]
: PT · ∇0N

J

−∇0N
I ·D · ∇0N

J
]
,

(53)

f I =

∫

B0

NI · b0 +

∫

Γt
0

NI · tA −
∫

D0

[[
FT · ∇0N

I
]
: S+∇0N

I ·B
]
. (54)
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5.2 Mesh-motion in the free-space

As the energies given in equation (37) are defined in terms of referential quantities, an
expression for the displacement u is required for the entire computational domain. More
pointedly, it is necessary that some artificial measure of deformation be provided within
the free-space S0 such that an associated, invertible deformation gradient (which maps
the configuration used for computation to the physically relevant spatial configuration)
can be defined and spatial quantities derived from M0 can be computed.

Moving mesh approaches adapted from the modelling of fluid systems with moving
boundaries (the “ALE” class of fluid formulations) can be utilised in magneto-elastic
problems [14, 53]. Johnson and Tezduyar [35] describes a typical approach to performing
this update, and the one that is used in this work. Once the deformation field in the solid
media is computed, we solve a linear elasticity problem

∫

S0

∇δu∗ : σ∗ = 0 with σ∗ = K
∗ (X) : ε∗ , ε∗ =

1

2

[
∇u∗ + (∇u∗)T

]
. (55)

The motion of the mesh in the free-space is thus governed by a fictitious stiffness
tensor defined at each integration point and the assumed Dirichlet boundary conditions.
There exist a number of viable choices to define an effective stiffness to the elasticity
problem [34, 35] and we choose to point-wise define the isotropic elasticity tensor

K
∗ (X) =

1

dh
I4 (56)

where dh is a measure of the longest diameter of the cell encompassing X. As for the
boundary conditions, we use the precomputed displacement of the solid media as the
driving Dirichlet boundary conditions for the artificial problem. This has the additional
benefit that the interface mesh between the free-space and solid domains (on Γds

0 ) is always
synchronised. To ensure the exterior shape of the far-field domain remains the same, we
fix all pseudo-elastic degrees-of-freedom on these surfaces. In the case where half of the
domain is modelled, as is the case for the problem demonstrated in section 7.2, only
symmetry conditions (that is that no out-of-plane displacement may occur) are enforced
on the cut-plane.

6 Extension and inflation of a hollow cylinder

In order to illustrate the physical behaviour predicted by the model presented in the pre-
ceding sections, we now present some calculations related to standard loading conditions.
This section presents a problem of inflation and extension of a magnetoelastic tube that
has been solved analytically.

We consider an infinitely long circular cylindrical tube made of an incompressible
magnetoelastic material with a directional anisotropy. We work in cylindrical polar co-
ordinates, which in the reference configuration B0 are denoted by (R,Θ, Z) and in the
deformed configuration by (r, θ, z). Let the internal and external radii of the tube in
B0 be given by A and B, which become a and b in Bt after deformation. The tube is
deformed by a combination of inflation and axial stretching as is depicted in figure 5.
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N

N

Pin

Figure 5: Cylinder being inflated through internal pressure Pin and extended in axial
direction through force N . Dotted curves in colour denote the direction of average align-
ment of particle chains and the applied magnetic field.

We will consider the external magnetic field being applied in azimuthal direction by an
electric current density through the axis of the tube. In this case, the magnetic field in
the azimuthal direction decays with increasing distance from the axis and is given by
hθ = h0/r where r is the radius.

The deformation is given (due to incompressibility) by

r =
[
a2 + λ−1

z

[
R2 − A2

] ]1/2
, z = λzZ, θ = Θ, (57)

where λz is the uniform axial stretch. Using the constraint of incompressibility, the
principal stretches in the azimuthal and the radial directions are given by

λθ = λ =
r

R
, λr = λ−1λ−1

z , (58)

respectively. For this case, the deformation gradient is given by F = diag(λr, λθ, λz).

6.1 Energy density functions

Following the discussion in section 4.2, the energy density function is additively decom-
posed into the energy of the matrix phase and that of the chain phase. We consider the
following prototype functions for each of these components

Ωmat
0 =

n1

α

[
exp

(
α [C : I− 3]2

)
− 1
]

︸ ︷︷ ︸
Ω

m,E
0

+n2[H⊗H] : I+ n3[H⊗H] : C−1

︸ ︷︷ ︸
Ω

m,ME
0

, (59)

Ωc
0 =

n4

α

[
exp

(
α[Cc : I−G2 : I]2

)
− 1
]

︸ ︷︷ ︸
Ω

c,E
0

+n5[H
c ⊗Hc] : I+ n6[H

c ⊗Hc] : C−1

︸ ︷︷ ︸
Ω

c,ME
0

. (60)

The magnetoelastic component is quadratic in terms of the spatial magnetic field vector,
and the use of the Fung-type energy function for the elastic part ensures that the chains
are stress-free in the undeformed configuration.
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In the case of incompressibility C̃ = C and we need only consider the functions
provided in equation (59) and equation (60). For such a case, the constitutive relation
for the Piola–Kirchhoff stress is given as

S = 2β1I− 2n3[C
−1 ·H]⊗ [C−1 ·H] + 2β2κ

2I+ 2β2[1− κ][1− 3κ]M⊗M

−2n6[C
−1 ·Hc]⊗ [C−1 ·Hc]− pC−1, (61)

where

β1 = 2n1 [C : I− 3] exp
(
α [C : I− 3]2

)
, (62)

β2 = 2n4[C
c : I−G2 : I] exp

(
α[Cc : I−G2 : I]2

)
. (63)

The magnetic induction is given by

B = −2n2H− 2n3C
−1 ·H− 2n5G ·Hc − 2n6G ·C−1 ·Hc. (64)

These quantities are given in the spatial configuration as

σ = 2[β1 + β2κ
2]b− 2n3h⊗ h+ 2β2[1− κ][1− 3κ]m⊗m

− 2n6[b
−1 · g · h]⊗ [b−1 · g · h]− pi,

(65)

and
b = −2n2b · h− 2n3h− 2n5g · b−1 · g · h− 2n6g · b−2 · g · h, (66)

where we have defined the push-forward of the structure tensor to the spatial configuration
as g = F ·G · Ft.

It is to be noted here that, due to this particular choice of energy functions, Ωc
0 defined

for the particle chain direction results in a Cauchy stress and magnetic induction that
are similar to those produced by Ωmat

0 , but aligned in the chain direction. The degree of
reinforcement in the chain direction is defined by the parameter κ, which measures the
strength of anisotropy.

6.1.1 Uniaxial deformation

In order to provide an understanding of the behaviour of the chosen energy density
function, we first consider a simple example of uniaxial deformation at a point. The
average chain alignment, the applied magnetic field and the applied deformation are
all in the same direction, say e1 = {1, 0, 0}t. Thus we consider the case when F =
diag(λ, λ−1/2, λ−1/2), H = {H1, 0, 0}t, and M = {1, 0, 0}t. For this test case, the total
Cauchy stress and the developed magnetic induction in the direction of loading are given
by

σ11 = 2
[
β1 + β2[1 + 4κ2 − 4κ]

]
λ2 − 2[β1 + β2κ

2]
1

λ

− 2

[
n3 + n6[1 − 2κ]2

1

λ2

]
H2

1 ,
(67)

and
b1 = −2

[
n2λ

2 + n3 + [1− 2κ]2
[
n5 +

n6

λ2

]]
H1, (68)
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where

β1 =2n1

[
λ2 +

2

λ
− 3

]
exp

(
α

[
λ2 +

2

λ
− 3

]2)
,

β2 =2n4

[
[1− 2κ]2[λ2 − 1] + 2κ2

[
1

λ
− 1

]]

× exp

(
α

[
[1− 2κ]2[λ2 − 1] + 2κ2

[
1

λ
− 1

]]2)
.

(69)

It is seen from equation (67) that stress increases in general with an increase in the
stretch λ. As the dispersion parameter κ increases from 0 to 1/3, the overall magnitude
of β2 decreases for λ > 1 and increases for λ < 1 while β1 remains unaffected. The last
term in equation (67) provides a positive stress contribution from the magnetic field for
the case when the effective coefficient comprising of the terms n3 and n6 is negative. The
stress contribution from the magnetic field has a quadratic dependence on H1 as observed
by Varga et al. [66, fig. 6] at least for the case of small strains. Clearly the magnetic
contribution to the stress is highest when the chains are perfectly aligned at κ = 0 and
decreases with an increase in the chain dispersion.

The magnetic induction from equation (68) is developed in the same direction as the
applied magnetic field when the overall coefficients constituted of the parameters n2, n3, n5

and n6 are negative. Magnetic induction has a linear dependence on the magnetic field
H1. As κ changes from 0 to 1/3, the magnetic induction decreases in value thus providing
maximum response in the case of perfectly aligned chains.

The above stated observations can also be derived from the plots of equations 67 and
68 as shown in figure 6. The graphs are plotted for the values of the parameters listed in
table 1 and H1 = 2× 105 A/m.

Table 1: Baseline values of the material parameters.

µ0 µe α n1, n4 n2, n3, n5, n6

4π × 10−7 N/A2 3× 104 N/m2 0.15 0.5 µe -0.5 µe

The proposed energy function corresponds to a material that shows a much higher
resistance to extension in comparison to a compressive deformation as is seen from fig-
ure 6a. As observed from figure 6b, a high magnetic induction is developed both during
compression and extension when the chains are perfectly aligned. In the case of isotrop-
ically distributed particles (κ = 1/3), the magnetic response during extension is more
pronounced in comparison to that during compression.

6.2 Anisotropy in azimuthal direction

We now use the energy density function presented in the previous section to the problem
of inflation and extension of a tube as presented in figure 5. As is depicted in figure 5,
we consider the average particle-chain alignment to be in the azimuthal direction. Thus,

M = {0, 1, 0}t , m = F ·M = {0, λ, 0}t. (70)
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Figure 6: Variation of stress and magnetic induction for a uniaxial deformation case for
different values of the dispersion parameter κ.

The structure tensor is given by G = diag(κ, [1− 2κ], κ).
Using the expressions in equation (65), the three principal components of the total

Cauchy stress in this case are given by

σrr = −p + 2[β1 + β2κ
2]λ2

r, (71)

σθθ = −p+ 2
[
β1 + β2κ

2 + β2[1− κ][1− 3κ]
]
λ2 − 2n3h

2
θ − 2n6[1− 2κ]2h2

θ, (72)

σzz = −p + 2[β1 + β2κ
2]λ2

z, (73)

and the azimuthal component of the magnetic induction from equation (66) is expressed
as

bθ = −2n2λ
2hθ − 2n3hθ − 2n5[1− 2κ]2λ4hθ − 2n6[1− 2κ]2λ2hθ. (74)

The equilibrium equation ∇ · σ = 0 gives

dσrr

dr
=

1

r
[σθθ − σrr] , (75)

r
dσrr

dr
= 2[β1 + β2κ

2][λ2 − λ2
r] + 2β2[1− κ][1− 3κ]λ2 − 2n3h

2
θ − 2n6[1− 2κ]2h2

θ. (76)

Thus the above differential equation can be integrated with respect to r to calculate
σrr as a function of r while σθθ is given as

σθθ = r
dσrr

dr
+ σrr. (77)

The principal stress in the axial direction (σzz) can be rewritten, using some algebraic
manipulations as

σzz =
1

2r

d

dr
(r2σrr)−

1

2
[σθθ − σrr] + [σzz − σrr]. (78)
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Thus the total axial force acting on the cylinder can be computed from

N =

2π∫

0

b∫

a

σzz r dr dθ = π
[
a2Pin − b2Pout

]
+ 2π

b∫

a

[
[σzz − σrr]−

1

2
[σθθ − σrr]

]
r dr.

(79)

Here Pin is the pressure in the inside of the tube (r < a) and Pout is the external pressure
in the region r > b. In deriving the above, we have also used the boundary conditions on
the lateral surfaces of the tube that are given by the balance of traction as

σrr = σ∗

rr − Pin on r = a, and σrr = σ∗

rr − Pout on r = b, (80)

where σ∗

rr obtains the value −µ0h
2
θ/2 at r = a and r = b. We note that expressions similar

to equation (75) and equation (79) have been obtained in the context of magnetoelasticity
earlier by Dorfmann and Ogden [20].

The values of the material parameters used to perform the calculations are taken from
table 1. The geometry of the tube is taken such that B/A = 1.4 while the following values
of the applied magnetoelastic deformation are taken

λa = a/A = 2, λz = 1.5, H0 = 2× 105A/m. (81)

Here we have defined a reference value H0 for the azimuthal magnetic field so that at a
radius r, hθ is given by

hθ(r) = H0A/r. (82)

We now plot σrr and σθθ as a function of the non-dimensional radius R̂ = R/A in
figure 7 for the magnetoelastic coupled loading specified in equation (81) but for different
values of κ to observe how the dispersion of chains affects the internal stresses. The
radial stress is maximum (a negative value indicating compression) at the inner surface
of the tube and decreases along the thickness direction reaching a minimum value close to
the outer surface. The circumferential stress is two orders of magnitude higher than the
radial stress since both the chains and the applied magnetic field provide reinforcement
in this direction. In this case also, the maximum stress occurs at the inner surface which
reduces through the thickness with a minimum occurring at the outer surface.

In both the cases, the maximum value of stress is obtained for κ = 0 when the chains
are ideally formed. However, even for a small change (when κ = 0.1), the response
changes rapidly and converges towards that of the matrix (κ = 1/3).

Given the deformed geometry and the applied magnetic field, one can compute the
internal pressure required to maintain the deformation using the boundary condition
(80). In figures 8 and 9 we plot the pressure as a function of inflation for two values
of λz (representing contraction and extension in the axial direction) and three values of
the dispersion parameter κ. As expected, the pressure Pin increases with the inflation
λa, with the increase in stiffness being exponential as is a typical response for a Fung
type material. The negative values for λa < 1 in the case of λz = 0.7 suggest that an
external compressive pressure is required to maintain that geometry. Interestingly very
little variation with the value of κ is observed in this region. However, when the tube is
in extension (λz = 1.5), the pressure rises both for inflation and deflation when the chains
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Figure 7: Variation of the radial and circumferential stresses along the tube thickness for
different values of the dispersion parameter κ.

are fully formed (κ = 0). This corresponds to a large response of the particle chains to the
externally applied azimuthal magnetic field. As inflation reaches higher values (λa > 2)
one observes significant differences in the pressure for two extreme values of κ. Similar to
the stress response, even a very small dispersion in the chains (e.g. κ = 0.05) leads to a
large change in the required pressure and the response approaches to that of an isotropic
magnetoelastic solid.
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(b) λz = 1.5

Figure 8: Internal pressure Pin for three values of κ and a prescribed axial stretch.

For the same case, we plot the variation of pressure with the externally applied mag-
netic field in figure 9 for both inflation and extension (λa = λz = 1.5). In general, the
required internal pressure increases with an increase in the applied magnetic field, lead-
ing to the conclusion that an azimuthal magnetic field tends to shrink the tube in radial
direction. The required pressure is highest when the chains are perfectly formed and pro-
vide reinforcement in the azimuthal direction, and minimum for the isotropic material.
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Figure 9: Internal pressure Pin for three values of the parameter κ. The deformation
parameters were λa = 1.5, λz = 1.5.

We compute the total axial force per unit area N̂ = N/[π[b2−a2]] required to maintain
the deformed geometry using equation (79) and plot this value in figure 10 to observe the
effect of chain dispersion. The applied loading conditions are that λz = 1 andH0 = 2×105

A/m. As the tube is inflated, it tends to shorten in length and an extensional axial force
is required to maintain the original length. Thus the force N̂ increases with inflation.
The axial load is at a minimum in the case of perfect anisotropy when all chains are
aligned in the azimuthal direction. As dispersion increases, the particle chains start to
provide a contribution in the axial direction and one observes an increase in the axial force
necessary to maintain the same level of deformation. Similar to the pressure response, a
significant variation with κ is observed only for the case of inflation λa < 1 and not in
contraction λa < 1.

7 Finite element examples

The finite element problem has been implemented using a total Lagrangian approach
within an in-house code developed using the open-source FE library deal.II [1, 2]. The
use of continuous linear shape functions for the purpose of discretising the magnetic po-
tential Φ ensure that its gradient is curl-free, thereby satisfying equation (7)1. Similarly,
continuous trilinear shape functions chosen for the displacement ϕ ensure that the com-
patibility conditions for the deformation are naturally satisfied. For the first problem
shown in section 7.1, a direct solver, namely UMFPACK [17], was used to solve the lin-
ear system of equations given by equation (51). In section 7.2 where a larger geometry
is considered, the entire linear system is solved using the stabilised biconjugate gradient
method [28] in conjunction with an algebraic multi-grid preconditioner [26, 29].
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Figure 10: Axial force per unit area N̂ [N/m2] vs the inflation λa = a/A for three values
of the parameter κ.

7.1 Oscillatory pure shear with step increase in magnetic po-

tential

In order to further demonstrate the general and limiting behaviour of the particle chain
model, a strip of magnetoelastic material is modelled assuming plane-strain conditions. In
this particular example, the free-space has been neglected. With reference to figure 11a,
the problem geometry and imposed boundary conditions are as follows: The strip of di-
mensions 1× 3mm2 (discretised by 12× 25 finite elements) is fully fixed on the −e1 face
and has a sinusoidally oscillating shear displacement in e2 direction (constant frequency
and amplitude) prescribed on the +e1 face. The maximum lateral displacement is set at
0.25mm (corresponding to a maximal shear strain of approximately 25%), with four pe-
riods simulated. Due to the plane-strain condition, the material thickness was arbitrarily
chosen to be 0.1mm and discretised by only a single finite-element. Note that as the
material has no rate dependence, the problem remains quasi-static in nature and time
can be interpreted as a loading parameter. The ±e2 faces are traction-free and periodic
displacement conditions are adopted on the ±e3 surfaces to ensure that the plane-strain
condition is achieved. The magnetic field is induced by prescribing a step-wise increasing
potential difference ∆Φ between the upper and lower surfaces of the strip. The chain
average orientation M is defined by the angle θ, which describes the offset with respect
to the thickness direction e1. As is illustrated in figure 11b, from this configuration it
is expected that the tensile and compressive behaviour of magnetised particle chains can
be evaluated. For this purpose, measurement data is recorded at the geometric centre of
the strip (denoted by point P) to minimise the influence of the boundaries.

In this example, the energy density function nominally remains that presented in
equations (59) and (60) but is augmented by the polyconvex volumetric function [30]

Ωvol
0 =

γ

4

[
J2 − 1− 2 lnJ

]
, (83)

where γ represents the bulk modulus. The material parameters for this problem are the
same as given in table 1 with the addition that γ = 2.9× 105 N/m2.

The observed magnetic behaviour of the material with strong chain-like structures
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(a) Material configuration with boundary condi-
tions. For this problem, D0 ∩ S0 = 0.

(b) Illustration of offset chain deforma-
tion upon deformation

Figure 11: Problem description, boundary conditions and expected behaviour of mi-
crostructure. The upper surface ∂B2

0 undergoes oscillatory displacement u = u (t) e2,
while a magnetic potential difference between the upper and lower surfaces is prescribed.
When the material is sheared to the right, chains will be placed in tension. When the
material is sheared to the left, (offset) chains may experience compression.

differed greatly to that of an isotropic medium. For both cases, away from the traction-
free boundaries and regardless of the motion, the magnetic field (related to the primary
field Φ) remains vertically aligned between the upper and lower surfaces. However, the
predicted magnetic induction upon incorporation of the particle chain model is no longer
aligned with the magnetic field, but rather reorientated towards the direction of the
particle chains. Furthermore, the direction of the total magnetic induction is measurably
influenced by the deformation as the particle chains undergo length change and rotation.

7.1.1 Variation of dispersion parameter κ

Firstly, we demonstrate the effect of the dispersion parameter κ on the material behaviour
for a fixed chain orientation θ = 0◦. The history of the component of the true stress
aligned in the thickness direction for the elastic components of the stored energy function
is plotted in figure 12 for one full period of deformation. It is shown that elastic stresses
produced in the chain phase increase towards that of the matrix contribution as the
dispersion is reduced. When the particles are randomly dispersed, the chain stress is
negligible. It is observed that in the limiting case of κ = 0, the chain stress exceeds that
of the matrix as the effective chain stretch computed from Cc : I − G2 : I = λ2

c − 1 is
greater than the matrix exponent C : I− 3 = λ2

1 + λ2
2 + λ2

3 − 3 for which λ2 < 1, λ3 = 1.
Furthermore, due to their alignment, the stress contributions σ11 suggests that only tensile
deformation has occurred within the particle chains.

Similarly, the stress contribution from the magnetoelastic components of the chain
energy function increases as the value of the dispersion parameter is reduced. Figure 13a
also highlights that the chain magnetoelastic stresses are proportional to the square of
the spatial magnetic field magnitude and, for this chain orientation, are unaffected by the
deformation. Contrary to the previous result, for near perfectly developed particle chains,
the chain and matrix stresses are equal. The stress magnitude is reduced considerably
as the degree of anisotropy is lowered, but the chains remain effective force generators
for relatively large values of κ. A similar trend is observed in the magnetic induction
generated though the thickness direction and shown in figure 13b.
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Figure 12: Variation of chain dispersion parameter. Cauchy stress magnitude in the +e1
direction (aligned with chain reference direction) for elastic components (matrix, chain)
of the energy density function. As the stress in the elastic components is dependent only
on the deformation, results for a single full oscillation are shown. The values for the
matrix component were recorded for the case for which κ = 1

3000
, and the time scale has

been non-dimensionalised.
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(a) Cauchy stress σ11
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(b) Spatial magnetic induction b1

Figure 13: Variation of chain dispersion parameter. Cauchy stress and spatial magnetic
induction magnitude in the +e1 direction (aligned with chain reference direction) for
magnetoelastic components of the energy density function. Within the given time-frame,
four full periods of mechanical oscillation and three ramped increases in the scalar po-
tential difference take place. Note that the results for the matrix and κ = 1

3000
are near

identical.

7.1.2 Chain orientation

We now consider a variable chain orientation by changing the value for θ while maintaining
a constant dispersion parameter κ = 1

3000
. As is illustrated in figure 11b, it is now expected

that chains may experience both tensile and compressive deformation during loading.
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This precise behaviour is observed in figure 14. Introducing an angular offset produces
tensile stresses in the chain for the first half-period of deformation, while compression is
experienced during the second half. Due to the geometry of the problem, the peak value
of the measured component of the stress is greater in magnitude during tension than
compressive loading of the chains. For θ = 30◦, the chains are nearly aligned with the
direction of principal stretch, invoking the largest stress response of the tested cases. As
the chains become more horizontally aligned, they undergo less deformation and exhibit
lower stresses. In the limiting case of θ = 90◦, there is no contribution to the stress from
the chains.
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Figure 14: Variation of chain orientation. Cauchy stress magnitude in the +e1 direction
(aligned with chain reference direction) for elastic components (matrix, chain) of the
energy density function. The values for the matrix component were recorded for the case
for which θ = 0◦.

As is shown in figure 15a, a similar dependence on deformation is observed for the
magnetoelastic contributions to the stress. Significant deformation of the chains produces
a deviation of the value of stress away from a mean value (computable at F = I). Due
to the form of the energy function (specifically its dependence on C−1), the generated
magnetoelastic stress is reduced when the chains are stretched, and increased when they
are shortened. From a microscopic viewpoint, this is sensible as for the most part the
closer the magnetisable particles are to one another, the larger their force-generation
properties are. This variance in stress is again greatest when the chains are most aligned
with the direction of principal strain.

Similar trends are observed for the magnetic induction shown in figure 15b. Increasing
the offset angle reduced contribution from the magnetoelastic components of the energy
density function to the first component of the magnetic induction. These contributions
were also influenced by the chain stretch. Comparing figure 15a to figure 15b, it is
observed that the magnetoelastic contribution to the stress, which is dependent on |hc|2,
is significantly more sensitive to the chain orientation than that of the magnetic induction,
which has a linear dependence on h.
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Figure 15: Variation of chain orientation. Cauchy stress and spatial magnetic induction
magnitude in the +e1 direction (aligned with chain reference direction) for magnetoelastic
components of the energy density function. Note that the results for the matrix and θ = 0◦

are near identical.

7.2 Tube with helical arrangement of chains in magnetic field

In this example, we examine the practical implication of being able to resolve the mechan-
ical and magnetic properties of particle chains, versus the behaviour of its surrounding
matrix. Shown in figure 16a, a thick-walled tube (denoted B0) of magneto-sensitive ma-
terial, with dimensions Di = 1mm, Do = 2mm, L = 2.5mm and a fillet radius of Rf

= 0.25mm, is placed within a magnetic field. The tube is axially centred in the overall
domain D0 and its one surface is aligned with the −e3 end-surface of D0. The overall
diameter and length of the computational domain are D∞ = 6mm and L∞ = 5mm re-
spectively. A point of measurement P = (0, 0.75, 2.25)mm is located halfway between
the inner and outer radii and near the end of the tube exposed to the free-space. The
symmetric problem discretisation is depicted in figure 17 with the filleting at the one end
of the tube, necessary to ensure that there exist no magnetic singularities in the problem,
clearly visible. The magneto-elastic media is represented by 9728 cells, and the free-
space by 25280 cells. The aforementioned choice of finite-element shape-functions results
in a total of 36960 elastic and 36576 potential degrees-of-freedom for the boundary value
problem.

The magnetic field is generated by the prescription of an increasing magnetic potential
difference ∆Φ (to a maximum difference of 250A, the limit of numerical stability for some
of the reported cases) between the axial surfaces of D0. The radial extents of S0 have
no prescribed potential, and are therefore subject to the natural boundary condition
B∞ · N∞ = 0. Displacement constraints are enforced on the end-surface of B0 that
intersect with the domain boundary. In particular, no axial movement is allowed in this
plane with the additional constraint that the outer annulus of the tube is fully fixed.
Lastly, as is illustrated in figure 16b, a spatial traction boundary condition ta (x) =
−λ [u · er] er is set on the radial surface of the tube to penalise the radial dilation or
contraction of this surface. Here, the direction vector er is the radial projection of the
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(a) Material configuration with helical
chain structure of MRE highlighted

(b) Boundary conditions imposed on do-
main

Figure 16: Problem description, boundary conditions and orientation of microstructure.
In this illustration, the chains are aligned at 45◦ to the circumferential direction. Except
for the outer annulus that is completely fixed, the bottom of the tube is free to slide in
the XY plane. An increasing potential difference is applied between the very upper and
lower surfaces of the domain. The tube is filleted on the edges indicated by Rf . The
measurement point P is near the free end of the tube and midway between the inner and
outer radial surfaces.

Figure 17: Sectioned view of the tube (B0, red) and surrounding free-space (S0, grey)
illustrating the spatial discretisation.
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current position x = ϕ (X) onto the original tube outer surface, and the value of the
penalty parameter λ = 250N/mm3. As the integration of the traction was performed on
the reference domain, we define an equivalent Cauchy stress such that ta (x) = σ · n ≡
[ta ⊗ n] · n. Thereafter, Nanson’s formula is used to define tA, the equivalent referential
traction, such that tA dA = ta da = [ta ⊗ n] · JF−t · n dA. The linearisation of the
variation of the total potential energy, given in equation (43), was augmented with the
additional non-symmetric term

∆δΠext = −
∫

Γt
0

δu ·
[
∂ta
∂u

·∆u+
∂ta
∂F

·∆F

]
(84)

to account for the deformation-dependent traction and normal.
The tube is composed of a media similar to that used in section 7.1, with the exception

that we substitute an incompressible neo-Hookean material

Ωm,E
0 =

µe

2

[
I1 − 3

]
, (85)

where µe is the shear modulus, for the elastic part of the matrix energy density function
previously described in equation (59), and additionally utilise the volumetric energy func-
tion provided in equation (83). The baseline material coefficients2 are given in table 2.

Table 2: Baseline values of the material parameters.

µe γ α n2, n5 n3, n6

30kPa 1490kPa 1 0.5µ0 −µ0

For this problem, we identify the material parameter n4 =
µc

2
as being related to the

small-strain chain shear modulus. The particle chains are assumed to, in the general case,
be arranged in a helical formation within the media. The chain or helix angle θ is given
with respect to the point-wise azimuthal tangent vector eθ, such that the average chain
direction M = M (X). The baseline chain parameters are listed in table 3.

Table 3: Baseline values of the chain parameters.

κ θ n4

µe
1

3000
45◦ 1

10000

A typical result of the fields for the magnetic quantities is presented in figures 18
and 19. The magnetic field is aligned axially with the tube, with a strength weaker than

2 Numerical issues related the presence of a non-negligible Maxwell stress contribution have been
indicated previously [14]. As a first approximation, it is sometimes convenient to ignore the Maxwell
contributions [53]. For this problem of a compliant elastomer in the presence of a strong magnetic field,
a large bulk modulus γ was required in order to maintain numerical stability. However, the use of linear
displacement ansatz to represent quasi-incompressible media in some scenarios may lead to artificial
volumetric locking behaviour being exhibited [33]. Comparison of a selection of the results presented
later with those derived using higher-order finite-elements produced, in the worst case, displacement
fields with less than 8% difference between them. This suggested that the problem, while completely
fictitious, nonetheless remained locking free.
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that of the far-field value present in the bulk of the material. A significant perturbation in
the scalar potential gradient is present at the end of the tube, ensuring that equation (7)2
is satisfied. If there exists no particle chains, or M is aligned perpendicular to the applied
magnetic field, then the resulting magnetic induction is aligned with h. However, as is
shown in figure 18c, the magnetic induction is offset towards M should the dispersion
parameter be sufficiently low. With the chosen material coefficients the tube compresses
axially and expands radially inwards. In figure 19b it is shown that the presence and
alignment of the mechanically weak chains generate additional forces that not only further
shorten the tube, but also induces a significant degree of torsion in it.

✻
h∞

(a) Contours of magnetic
field strength. The black
lines outline the cross-
section of the tube.

(b) Magnetic induction (ei-
ther without particle chains,
with κ = 1

3
or with θ = 0◦)

(c) Magnetic induction (with
particle chains; parameters
given in table 3)

Figure 18: Magnetic quantities (shown in B) at maximum scalar potential difference.
The direction of the far-field magnetic field is indicated in figure 18a.

Hereafter, in a parametric study we investigate the influence of various material pa-
rameters on the displacement recorded at P.

7.2.1 Variation of dispersion parameter

The introduction of the helically orientated particle chains of sufficient consistency signifi-
cantly influence the mechanical response of the magneto-sensitive tube. As was previously
described, magnetostriction of the media is induced by application of the magnetic field.
However, if the chains are strongly formed, twist can be also induced in the tube. Given
that the material remains compliant in the direction of the chains, the chains shorten
significantly in the direction of M thereby causing rotation of the material.

Figure 20 quantifies the resulting twist and shortening recorded at P under increasing
magnetic load. For the chosen material models, parameters and boundary conditions, the
total displacement and magnetic field strength are quadratically related. Although the

29



(a) Displacement field either without par-
ticle chains, with κ = 1

3
or with θ = 0◦

(b) Displacement field with particle chains
(parameters given in table 3)

Figure 19: A comparison of the displacement fields generated by ignoring or including
the influence of particle chains. Vectors are coloured and scaled relative to the magnitude
of the displacement.

total twist is directly proportional to the dispersion parameter, the overall reduction in
length of the specimen remains largely independent of κ. Associated with the decrease in
the dispersion parameter is a marginal stiffening upon deformation in the axial direction.
This is not completely offset by the increase in force generation properties in the axial
direction and therefore leads to decreased shortening of the tube. It should be noted that
a significant twist is measured even when the particles constituting the chains are not
highly organised.

7.2.2 Variation of chain orientation

The chain orientation influences not only the degree of magnetisation of the particle
chains, but also the line of action of the resulting force developed due to particle-particle
interactions. It is demonstrated visually in figure 21 that modification of the orientation
angle, for strongly formed but compliant chains, affects both the amount of twist and
contraction induced in the tube.

Interestingly, as can be deduced from figure 21a, there exists some non-trivial optimal
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(b) Axial displacement

Figure 20: Influence of dispersion parameter on deformation at measurement point P

when the chains are mechanically weak (n4

µe
= 1

10000
). We consider the deformation field

shown in figure 19b to have undergone positive angle of twist.

value for θ such that the amount of twist is maximised. For the tested range of parameters,
the choice of θ = 60◦ induced the largest angular displacement in the sample at point P.
Figure 21b however demonstrates that the total axial contraction depends on the cosine
of θ. When the chains are aligned with the direction of the magnetic field, they reinforce
the magnetostrictive effect of the matrix, resulting in the greatest shortening effect. With
the chains perpendicular to the magnetic field, they remain non-magnetised and no chain
magnetisation stress is generated. They do however still affect the mechanical stiffness
of the material in the azimuthal direction.

0 10 20 30 40 50
0

2

4

6

8

10

Far-field magnetic field strength [kA/m]

A
n
g
le

of
tw

is
t
[d
eg
]

θ = 90◦ θ = 75◦ θ = 60◦ θ = 45◦

θ = 30◦ θ = 15◦ θ = 0◦

(a) Angle of twist

0 10 20 30 40 50
−60

−40

−20

0

Far-field magnetic field strength [kA/m]

A
x
ia
l
d
is
p
la
ce
m
en
t
[µ
m
]

θ = 90◦ θ = 75◦ θ = 60◦ θ = 45◦

θ = 30◦ θ = 15◦ θ = 0◦

(b) Axial displacement

Figure 21: Influence of chain orientation on deformation at measurement point P.
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7.2.3 Variation of chain elastic modulus

Previously the examined conditions were such that µc ≪ µe, inferring that the chains
provide little mechanical reinforcement to the material. However, given that the typical
composition of such a material involves the ordered deposition of metallic particles in a
soft substrate, it is more likely that in commercially applicable materials the difference
between µc and µe is less extreme and µc ≥ µe. The actual ratio of these effective shear
moduli not only depends on the particulate composition, but also the inter-particle space
occupied by the compliant matrix. Towards the limit when µc ≫ µe, it can be assumed
that the micron-sized particles are in contact and effectively form very stiff reinforcing
chains.

As is shown in figure 22, the ratio of the chain to matrix shear modulus plays a
significant role in the deformation of the tube resulting from magnetic loading alone. It
is observed that when the chain shear modulus is very large in comparison to that of
the matrix, the induced direction of twist is opposite to that caused when the chains are
compliant. This is as the increased stiffness in chain direction ensures that direction of
deformation is locally restricted primarily to transverse plane of isotropy. Associated with
this increase in chain stiffness is a reduction in the total twist and axial shortening. When

this ratio of stiffnesses is
µc

µe
= 2

n4

µe
≈ 10, the magnetically-generated contractile force

in the circumferential direction is nearly perfectly balanced by the additional stiffness
provided by the particle chains in this direction.
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Figure 22: Influence of chain shear modulus on deformation at measurement point P.

Given that the influence of the chain stiffness has such a significant impact on the
material deformation, we revisit the scenario described in section 7.2.1, but now prescribe
mechanically stiff chains. Figure 23 illustrates that a decrease in the dispersion parameter
is associated with a notable decrease in axial shortening due to the increased material
stiffness. However, contrary to what has been observed previously, it is also correlated
with a decrease in the amount of (negative) twist induced in the tube. At some non-
trivial value of κ (which has not been resolved here), the force-generation properties of the
relatively dispersed chain structures overcome the mechanical reinforcement. However,
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as the chains become less dispersed the angular displacement of the tube is reduced
significantly due to the increased stiffness in the circumferential direction.
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Figure 23: Influence of dispersion parameter on deformation at measurement point P

when the chains are mechanically stiff (n4

µe
= 100).

7.2.4 Variation of bulk and chain material coefficients

Depending on the experimental conditions and organisation of the particle micro-structure
developed during curing, the MRE may be expected to demonstrate different mate-
rial behaviour [16, 65], namely axial contraction or elongation. The former effect has
been shown thus far, but in this section we will demonstrate that modification of the
magneto-elastic material coefficients used in table 2 for the prototype energy function
causes the material to exhibit different behaviours. In each instance, we vary both
the chain and bulk magneto-static and magneto-elastic material coefficients3 (by set-
ting n2 + n3 = n5 + n6 = −0.5µ0) such that the magnetic induction within the material
remains qualitatively and quantitatively similar.

In figure 24 the outcome of using the material coefficients listed in table 4 are illus-
trated. It is apparent both axial contraction and elongation of the tube can be modelled
using the energy density function. With reference to Danas et al. [16, fig. 5], the choice
of chain material coefficients is assumed to be linked to the microstructure and therefore
dictate their magnetostrictive behaviour. In case 7, the magneto-elastic component is
removed, with no twist being induced and axial extension of the tube occurring due to
the influence of the free-space Maxwell stress. In contrast to the previous results and
those demonstrated in cases 1–6, positive values for n6 cause the chains to elongate and
induce a negative angle of twist.

Figure 25 demonstrates that an alteration of the coefficients governing the chain be-
haviour can significantly alter that behaviour of the tube under a magnetic field. For the

3 Note that the convexity/concavity of the energy density function has not been examined.
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Figure 24: Influence of material coefficients on deformation at measurement point P when
the chains are mechanically weak (n4

µe
= 1

10000
). The material coefficients for each case are

listed in table 4.

Table 4: Chain and bulk material coefficients for cases in parameter study where n2 = n5

and n3 = n6.

Case n2, n5 n3, n6 Case n2, n5 n3, n6

1 µ0 −1.5µ0 6 −0.25µ0 −0.25µ0

2 0.75µ0 −1.25µ0 7 −0.5µ0 0
3 0.5µ0 −µ0 8 −0.75µ0 0.25µ0

4 0.25µ0 −0.75µ0 9 −µ0 0.5µ0

5 0 −0.5µ0

parameters listed in table 5, the axial deformation trends remain qualitatively similar to
those shown in figure 24. However, the force generation properties of the chains differ and,
in some cases, the chain model no longer produces a force that reinforces the bulk model
leading to smaller displacements. This can be verified by comparing the twist directions
between the two sets of results. For comparable bulk properties, the twist direction has
changed although the compressive behaviour of the bulk remains largely the same.

Table 5: Chain and bulk material coefficients for cases in parameter study where n2 = n6

and n3 = n5.

Case n2, n6 n3, n5 Case n2, n6 n3, n5

1 µ0 −1.5µ0 6 −0.25µ0 −0.25µ0

2 0.75µ0 −1.25µ0 7 −0.5µ0 0
3 0.5µ0 −µ0 8 −0.75µ0 0.25µ0

4 0.25µ0 −0.75µ0 9 −µ0 0.5µ0

5 0 −0.5µ0

Although not presented here, using the parameters given in table 4 but mechanically
strong chains (e.g. with n4

µe
= 100) leads to material having both angular and axial
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Figure 25: Influence of material coefficients on deformation at measurement point P when
the chains are mechanically weak (n4

µe
= 1

10000
). The material coefficients for each case are

listed in table 5.

deformation characteristics similar to those shown in figure 25.

8 Conclusions and discussion

Dispersion of the particle-chains in magneto-active polymers is an undesirable but preva-
lent phenomenon as shown by several experiments, such as the ones presented in figure 1.
Thus, it needs to be appropriately accounted for while constructing material models for
these functional elastomers. In this paper, we have presented a procedure to model the
effects due to dispersion of iron-particle chains in magneto-active elastomers. Based on
similar developments in biomechanics, a probability-based structure tensor G that ac-
counts for imperfect distribution of chains is defined and is used as an input to the energy
density function. This is based on a parameter κ ∈ [0, 1/3] that defines the degree of
anisotropy. Additionally, as a simplification, we decompose the energies of the matrix
and the chain phases – the latter based on the definition of a ‘chain deformation gradient’
Fc and a ‘chain magnetic field’ Hc.

As is seen from the parametric studies in sections 6 and 7, the proposed model is able
to capture the dependence of material response on the degree of anisotropy parameter
κ. As κ → 0, one obtains a perfectly anisotropic material and leads to stiffening of
the material in the anisotropy direction. On the other hand, as κ → 1/3, the material
tends to become isotropic and the response of the chain phase and the matrix phase
tend to align. Moreover, as is exemplified in figure 22, even for the case of perfect chain
formation, one can obtain completely different magnetoelastic responses from the same
geometry by making the chains stiffer or weaker than the bulk matrix. It has been
extensively demonstrated that very different behaviours can be elicited from a material
by appropriately modifying the constitutive model parameters.

A future course of research will be to employ image processing techniques to extract
3-D chain distribution parameters from the X-ray CT scans. This data will then be used
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to provide numerical values to the structure tensor at every mesh point and appropriately
model the material. Furthermore, using the models of rate-dependence and the experi-
mental data on testing with magnetoelastic loading, a future aim is to provide physically
and mathematically consistent material models for these smart polymers.
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[3] A. Bermúdez, R. Rodŕıguez, and P. Salgado. A finite element method for
the magnetostatic problem in terms of scalar potentials. SIAM Journal on
Numerical Analysis, 46(3):1338–1363, 2008. doi: 10.1137/06067568X. URL
http://epubs.siam.org/doi/abs/10.1137/06067568X.

[4] A. Boczkowska and S. F. Awietjan. Smart composites of urethane elastomers with
carbonyl iron. Journal of Materials Science, 44(15):4104–4111, May 2009. ISSN
0022-2461. doi: 10.1007/s10853-009-3592-7.

[5] A. Boczkowska, L. Czechowski, M. Jaroniek, and T. Niezgoda. Analysis of magnetic
field effect on ferromagnetic spheres embedded in elastomer pattern. Journal of
Theoretical and Applied Mechanics, 48(3):659–676, 2010.
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