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Abstract

Materials that are sensitive to an applied magnetic field are of increased in-
terest and use to industry and researchers. The realignment of magnetizable
particles embedded within a substrate results in a deformation of the material
and alteration of its intrinsic properties. An increased understanding of the in-
fluence of the particles under magnetic load is required to better predict the
behaviour of the material. In this work, we examine two distinct approaches to
determine the resulting magnetic force and torque generated within a general
domain. The two methodologies are qualitatively and quantitatively compared,
and we propose scenarios under which one is more suitable for use than the
other. We also describe a method to compute the generated magnetic torque.
These post-processing procedures utilize results derived from a magnetic scalar-
potential formulation for the large deformation magneto-elastic problem. We
demonstrate their application in several examples involving a single and two par-
ticle system embedded within a carrier matrix. It is shown that, given a chosen
set of boundary conditions, the magnetic forces and torques acting on a particle
are influenced by its shape, size and location within the carrier.

Keywords: Magnetoactive materials; Magnetostatics; Magnetoelasticity; Finite-
Element Method

1. Introduction

Magneto-sensitive materials are of increasing prevalence in a variety of industries. This
class of materials is commonly characterized by the presence of magnetizable particles
in suspension in a non-magnetizable substrate. In the presence of a magnetic field, they
change their material properties. Due to their ability to react to external magnetic
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stimulation, they find use in a broad range [20] of automotive [32], industrial [3] and
robotics [27] applications, to name a few examples.

Optimizing the composition of these materials is challenging for numerous reasons.
In the presence of a magnetic field, particles tend to form chain-like structures. The dy-
namic inter-particle interactions, as well as those between particles and their substrate
(to which they may be strongly or weakly chemically bonded), are complex. Under
magnetic loading, these interactions influence the particle migration, which may be
temporary or permanent depending on the nature of the carrier. Particle agglomer-
ation also affects the viscous or deformation properties of the bulk material. Direct
numerical modelling of the moving particles is often difficult due to their size with
respect to the simulated application. In such cases, material characterisation may be
achieved with the use of representative volume elements (RVEs) or particle tracking
methods, employed in the fields of solid and fluid mechanics, respectively.

Particles in fluidic suspension [19] have been investigated in detail. The carrier mate-
rial is often assumed to be non-magnetizable and the particle assumed to demonstrate
a magnetically linear behaviour. Typically in these works, discrete modelling tech-
niques are commonly used, although dipole models [15, 18, 36], the fictitious domain
method [1], boundary element method [31] and finite element method [16, 22] have
also been applied. Numerical investigations on particles embedded in elastomers find
application when introducing a RVE and applying different homogenization [13, 29]
or averaging techniques [44]. The magnetostriction, as well as material strains and
stresses, can be quantified using these approaches [2, 441]. The magnetic torque acting
on an elliptical fibre in a composite has also been investigated by [13].

In the current work, we describe two methods for calculating the total magnetic
force on a representative heterogeneous domain subject to a non-trivial magnetic field.
What we call the weak method, allows for a rapid determination of the overall magnetic
force, with the possibility to isolate single particle forces when the carrier matrix has
a low relative permeability. The second method, so-called strong method, allows for a
more detailed analysis of the forces generated within individual particles, as well as the
computation of the magnetic torques. All calculations are embedded within a large
deformation finite element framework that is capable of capturing the mechanical
and magnetic non-linearities of the material. We choose the magnetic field as the
independent variable of the problem. For doing so, a Legendre transformation of
the energy function has to be performed to switch the dependency on the magnetic
induction to a dependency on the magnetic field. For the numerical implementation, we
correlate the magnetic field with the gradient of a magnetic scalar potential. However,
we demonstrate that the description of the ponderomotive stress and force remain
consistent regardless of the chosen independent variable. Numerous scenarios, in which
a particle is embedded in an only slightly magnetizable medium, are evaluated and
analysed using both methods thereby demonstrating the relative accuracy between
the two. Our investigations are thus extensible to complex compound materials with
inhomogeneous permeabilities and can serve as baseline to design suitable RVEs in a
multi-scale simulations. They are not restricted to a non-magnetizable carrier as is
often the case for applications involving magnetorheological elastomers. As different
particle shapes and sizes were reported in [12] and [39], we perform parametric studies



Figure 1: The continuum setting of a two material domain in the deformed configura-
tion.

on the effect of particle size, shape and position in a non-uniform magnetic field. We
conclude the examples by investigating the interaction of two particles immersed into
a magnetic field.

This remainder of the manuscript is structured as follows: In section 2, we provide an
overview of the equations relevant to the problem of magneto-elasticity. We describe
the transformation of the total energy functional using a Legendre transformation in
section 3. The description and implementation of two methods to calculate magnetic
forces with in the computational domain are presented in section 4. Several numerical
examples are presented and discussed in section 5, which is followed by the conclusions.

2. General equations

With reference to fig. 1, we consider a deformed two-component body B; positioned
within a second medium &;. Within the compound B;, two differently magnetizable
materials occupy the regions B} and B? such that B; = B} UB?. The interface between
the two is denoted by 9B?. S; represents the surrounding free space and the far-field
boundary 9S., of S; is considered to be fixed in time and distant from B;. The
complete boundary of S; can thus be described as 4S; = 0S., U OB; where 0B} and
0B; coincide.

The boundary of the body is split such that mechanical Dirichlet boundary condi-
tions are prescribed along 9B%, whereas a Neumann condition in terms of prescribed
mechanical tractions ¢, is given along dB}. The externally applied magnetic field is
defined by a Dirichlet boundary condition along the boundary 0S%..

We define the spatial configuration B; such that * = ¢ (X, t) describes the non-
linear mapping of points in the reference configuration By to this deformed configura-
tion. The deformation gradient is then F' := Vx ¢ and the Jacobian J = detF' relates



the change in volumes between the two configurations.

Governing equations With respect to magnetism, we assume that the problem is
static and there exist neither free surface nor free volume currents. The quasi-static
Maxwell’s equations for the spatial magnetic induction b and the magnetic field h
read as

Ve-b=0 and Vi xh=0 in B US;, (2.1)
with the associated boundary and interface conditions given as

[b] - nf

[h] x n;

0 on OB, .
0 on OB, hxng=hygxne on 9S82, (2.3)

with the jump of quantities defined as [o] := [¢]"**'%° — [¢]™*%® and i € {1,2}. Equa-
tion (2.1)s is fulfilled exactly by deriving the magnetic field from a magnetic scalar
potential

The continuity and boundary conditions for the magnetic field translate then to con-
ditions for the magnetic scalar potential

[¢] =0 on 0B, © = Poo on J8Z. (2.5)

Additionally, we can prescribe a Dirichlet boundary condition for the magnetic scalar
potential along a subportion of 9B;

o=@ on OB}. (2.6)

In free space, the relationship between the magnetic induction and the magnetic field
is b = pgh with the vacuum permeability po. In a general material, this relationship
is no longer linear in h, but is rather described by [21]

b=po[h+ m] in By, (2.7

where m represents the magnetization of the material. With the help of the pull-back
operations of the magnetic quantities

H="h-F, B="b-JF T, M=m-F, (2.8)
it can be observed that eq. (2.7) translates in material configuration to
B=puJC ' [H+ M] in Bp. (2.9)

As usual, C = FT . F denotes the right Cauchy-Green deformation tensor.



For the coupled magneto-mechanical problem, we neglect inertial forces and solve
the balance of linear momentum [10, 11, 21, 34]

Ve 0 +b" +b,=Vp-0 +b, =0 in B, (2.10)

where bY°" denotes the ponderomotive body force density and b; the mechanical body
force density. Here, we define o'°* as a symmetric Cauchy type total stress tensor
[26, 34, 35, 40, 41] which includes the non-symmetric elastic stress o as well as the
additional ponderomotive contribution oP°". In knowledge of the ponderomotive force

term given in [4, 28], the ponderomotive stress is defined such that [7, 17, 21, 24, 25, 34]
1
Ve 0P =B} = m-Vb with o= [b-bli—[h- b]i+hob. (211)
Ho
It is observed that, due to the magnetic contribution
g =mxDb (2.12)

to the balance of angular momentum, the contribution from the elastic stresses o
is no longer symmetric. However, the total stress ot°' is symmetric. A split of the
ponderomotive stress in non-symmetric and symmetric parts [4—6, 8, 10, 17, 23, 37, 38],
leads to the non-symmetric magnetization stress

o =m-bli—m®b (2.13)
and the symmetric Maxwell stress
1 1 1
o’ =——1b-bli+ —b® b= —-Mi+—b® b. (2.14)
210 Ho Ho

with the spatial magnetic free field energy M;. It should be mentioned that the
ordinary Cauchy stress o, the magnetization m and thus the ponderomotive stress
oP°" only exist inside matter. The Maxwell stress as well as the magnetic free field
h* = pg ' do not vanish outside matter, however, and both fulfill a divergence free
condition.

A Piola transformation of o' leads to a non-symmetric total Piola stress P™" in
referential configuration together with the ponderomotive stresses

PtOt:O'tOt'JF_l, Pmag:[M' IB]F_T—]HI@]B, PmaX:—MoF_T+hM®]B,
(2.15)

with the referential counterpart My of M; derived as
1
My (F, B) = ﬂJ‘lC :[B® BJ. (2.16)
0

The jump and boundary conditions associated with the balance of linear momentum
are

0 on OB, [ - ni = —t; on 0B, (2.17)
P on OBY, p(X)—-X=0 on 0S8. (2.18)

[l
P



Resultant ponderomotive force and torque acting on particle We consider the
domain B? as a particle suspended in a carrier matrix occupying the region B}. We
are interested in the resultant ponderomotive force and torque acting on the particle
due to an externally applied magnetic field. According to [10, 14], the ponderomotive
force acquires an additional surface contribution at the interface 9B7 between particle
and matrix. It holds that

fron — /Vm . oPo 4 /[[o.pon]] -ng. (2.19)

B2 oB?
By exploiting eq. (2.11); and introducing the definition of the ponderomotive tractions

2" = [oP"] - nf (2.20)

i
which can occur at all material discontinuities (both B} and 9B?), we can rewrite
the resultant ponderomotive force in the volume and along the interface as

R A A F (o .21
B2 oB?

Similarly, the magnetic moments can also be defined as

Mg = [ o0 g7 1 [ o x ) =, (2.22)
B2 oB2

Immediately from eqgs. (2.21) and (2.22) it is observed that the ratio of pondero-
motive forces and torques developed in the bulk and on the surface of solid bodies
depend on several factors besides the constitution of the particle B? itself. The size
of the particle defines the surface area to volume ratio. Furthermore, the difference
in relative magnetic permeability of adjacent materials affects the magnitude of the
jump of the ponderomotive stress across the interface.

3. Constitutive relations and Legendre transformation of
energy

To set up constitutive relations, it is assumed that the body B, is composed of magneto-
sensitive material that is influenced by the magnetic field permeating it. We further
assume the existence of a total energy per unit referential volume [8],

Wy (F, B) = U, (F, B) + M, (F, B). (3.1)

Wy is additively decomposed into a contribution Wy, which accounts for the stored
energy due to elastic deformation and magnetization, and the free field magnetic energy
My. The constitutive laws describing such a material are given as

oW, oW,

Ptot _ —_ .
OF ’ 0B

(3.2)



The corresponding decompositions into elastic and magnetic as well as Maxwell com-
ponents can be derived as
_ OMy

8\110 max
I e (3.3)

P+ Pt =
In an analogous manner, we can derive for the referential magnetic quantities

0My
= —— e
M 0B’ i 0B

=puytJIC - B, (3.4)

where H* denotes the referential magnetic free field. For the implicit definition
eq. (3.4); of the magnetization vector [12], we used the identity eq. (3.4) in con-
junction with eq. (2.9).

Since we assume no free currents and can therefore express the magnetic field in
terms of the magnetic scalar potential ¢ (see eq. (2.4)), we perform a Legendre trans-
formation on Wy to switch the independent magnetic field variable from B to H. This
approach is preferred due to its simplicity and straight-forward numerical implemen-
tation. The Legendre-transformation is defined as [5, §]

Wi (F, H) = Wy (F, B(H)) - H- B(H) = W} (F, H)+ M; (F, H).  (3.5)
with M being the Legendre-transformation of M in free space [11]
1
M (F, H) = —§,u0JC_1 [He H]. (3.6)

Exploiting the constitutive relation eq. (2.9) in eq. (3.5), one can straight-forwardly
derive

Wy (F, H) = W (F, B(H)) + 110/ : [M(H) & M(H)]. (3.7)

The corresponding constitutive laws in the material setting are

owg oWy
tot __ 0 _ 0
P = OF "’ - 9H (38)
This yields the corresponding decompositions of the stresses
, ov; . oM}
*mag __ 0 *max __ 0
P+ P F aF (3.9)
and the magnetic variables
oV oM}
-1 . = — 0 — -1 . = 0
o JC M EiER o JC H 9 (3.10)

In analogy to eq. (3.4), we used for the implicit definition of the magnetization vector
eq. (3.10); the identity given in eq. (3.10)2 together with the relation between the
spatial magnetic fields eq. (2.9). Equation (3.10); is also in line with eq. (3.7).



In the Legendre transformed total energy, the spatial description of the dependent
variables, namely the Cauchy stress, magnetic induction and magnetization are

oWy oWy oV
tOt::J—l O_FT 'U:):_J—l O'FT — _ 71J—1F. O.
7 oF T om T 0 T oH
(3.11)
Correspondingly, the Maxwell stress now takes the format
1 . e
U*max:fiuo[]h~]h]z+u0]h®]h:Mtz+uolh®lh, (312)
while the magnetization stress can be derived as
*1M. 1 .
o™ = — g [m- m]i+ poh® m. (3.13)

2

For a detailed derivation of the magnetization stresses o*™2¢, we refer the reader to
appendix A. Summation of o*™** and o*™?8 leads to a ponderomotive stress o*P°",
which takes the identical form to that previously described in eq. (2.11)s.

xpon ¥max | oxmag _ pon (3.14)

o =0
Therefore, regardless of the choice of the independent variable, the decomposition into
Maxwell and magnetic stress as in egs. (3.12) and (3.13) remains consistent with the
definition of the ponderomotive body force as in eq. (2.11);. Furthermore, it can
be demonstrated that a re-parameterisation of the total energy function in terms of
the spatial magnetic quantities leads to constitutive laws in accordance with those

presented in [34].

4. Finite element approximation

4.1. Solution of the weak form
From the balance of forces and the Maxwell equation, the variation of the total poten-

tial energy

oIl = /O'tot :Nedp+b - Ve + /o’*max :Nedp+b - Vi dp
B St

(4.1)
- [ode- [ 60
Bt OB
is equal to zero when the system is in equilibrium. As is discussed in [43], the finite

element method can be used to solve for the stationary point of the total potential
energy functional given in eq. (4.1).



This coupled problem has been implemented using the following Galerkin finite
element approximations

@~ @Ni, o~ @INs (4.2)
I I

e~ Y 0@ VN, Ve = Y 01V, (4.3)
I I

where N represent the shape functions and V,N; their respective spatial gradients.
For both the deformation and magnetic scalar potential, the finite element approxima-
tion results in a continuous solution field but piecewise discontinuous solution gradi-
ents. Equation (2.5); is strongly fulfilled through the use of node-based finite elements.
The condition stated in eq. (2.2);, comparable to the traction-free condition for the
mechanical stress, is only fulfilled weakly as the magnetic induction is the dependent
variable.

4.2. Ponderomotive force and torque acting on a particle

Subsequent to the computation of the equilibrium of the magneto-mechanical problem,
the post-processing steps to compute the resultant ponderomotive force and torque can
be performed. Two methods are provided below, which can be used to compute the
ponderomotive force and torque acting on an arbitrary subdomain B? C B; such as
that occupied by a particle.

4.2.1. Computations derived from the strong form (SF) of balance of momentum

In the first method, which we call the strong form (SF), we pursue a strong evaluation
of the ponderomotive force and torque as given in egs. (2.21) and (2.22). Two features
require special attention:

Firstly, the calculation of the gradient of the magnetic induction necessitates a
smoothed magnetic induction field because the gradient needs to be evaluable also
within a low-order finite element approach. A reformulation of V; b in terms of the
magnetic field h via the constitutive law would feature second order derivatives of
the magnetic scalar potential. These derivatives vanish, however, when linear shape
functions are utilized for the magnetic scalar potential. Thus, a reformulation is not
the favored approach and the smoothing is inevitable.

Secondly, in order to attain a jump in the ponderomotive stress across a material
interface, it is necessary to allow for discontinuous magnetic fields across surface dis-
continuities. Thus, the smoothing may not annihilate the discontinuity property of
the magnetic induction at an interface but must preserve it.

To account for both difficulties, the magnetic induction is initially computed at each
quadrature point from the constitutive law (3.11)s of the corresponding material. It
is subsequently projected to the nodes using a £2 smoothing procedure [33]. This
procedure is performed individually for each material subdomain Bi, thus generating



double values along all material discontinuities. This caters for the reasonable ex-
pectation that the magnetic field quantities are smooth on a per-material basis, but
possibly discontinuous across material interfaces.

The smoothed magnetic induction El(:v) within B! can be computed by solving the
linear problem

s Ef] = by, (no summation over %) (4.4)

where %S represent the nodal values of the smoothed magnetic induction. The con-
tributions for the consistent mass matrix and right-hand side are

L= Z ZNI(wZ)NJ(a:Z)wg and

heBi" 4

b= Y b (al) N () ul

heBih 4

(4.5)

with h representing an element in the discretized domain Bi’h, q the local numbering of
the quadrature points, wg the real position of each quadrature point and wg a weighting
factor belonging to the numerical integration. The smoothed value and approximated
gradient of the magnetic induction at any position within B! are therefore given by

b (@)~ Y BN, (@) and Vb))~ by o %N, (). (4.6)
J J

The same procedure is applied to compute the subdomain-restricted smoothed fields
of the magnetization and magnetic field. We indicate the use of subdomain smoothing
prior to the evaluation of egs. (2.21) and (2.22) by the suffix S in subsequent text,
tables and result figures.

Alternatively to the exclusive usage of smoothed fields, also a non-smoothing tech-
nique is performed, which we denote subsequently by NS. In this approach, only the
magnetic induction is £2 projected because of its gradient calculation, but the values
of the magnetization are stored for each quadrature point (qp) during the equilibrium
loop when solving for the stationary point of (4.1). These values are reused to evaluate
the volume integrals in eqs. (2.21) and (2.22). For the computation of the interface
terms, the values of b and h are first extrapolated elementwise from the quadrature
points to the nodes of each element, and then interpolated to the quadrature points on
the element’s face. A comparison of the variables used for smoothed and non-smoothed
technique can found in table 1.

4.2.2. Computations derived from a variational (weak) form (WF) of the balance
of momentum

For the derivation of the second approach to calculate the ponderomotive force, we
consider a cut-out as computational domain Dy, which is depicted in fig. 2a. D; rep-
resents a particle surrounded by magnetizable material. As is detailed in appendix B,
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Table 1: Clarification of smoothed and non-smoothed technique for the strong form
calculation

strong form (SF) volume interface
m Ve b h b

smoothed (5)
non-smoothed (NS)

L2 projected L2 projected
extrapolated extrapolated

L2 projected L2 projected
stored for each qp  £2 projected

Dy
1 2
Bl B t
t D b [
2 [
= B;
7

(a) (b) Nodal forces on entire magneti- (c) Nodal forces on a par-

zable computational domain D; ticle B? , i.e. a subset

of the magnetizable com-
putational domain Dy

Figure 2: Nodal forces computed using the weak formulation of the ponderomotive
force.

an alternate description of the total ponderomotive force acting on the domain can be
developed from the weak form of the balance of momentum. We denote this approach
by the abbreviation (WF). The result is a global node vector of ponderomotive forces
computed by

fI;OH:/NIb$OH+ / NItgon
Dy oB2

N /NI (07" - nop, | ’/Bz~0p°“~ (4.7)
D,

0Dy

The resultant ponderomotive force on the computational domain Dy is simply

o= i (4.8)

IeD,

Compared to the method described in section 4.2.1, the computation in eq. (4.7)
is easy to implement and computationally inexpensive to perform. However, as the
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Table 2: Clarification of smoothed and non-smoothed technique for the weak form
calculation

weak form (WF) volume boundary
oPpon gPbon

smoothed (S)
non-smoothed (NS)

L2 projected
extrapolated

L2 projected
stored for each qp

sketch in fig. 2b shall illustrate, the result of eq. (4.7) are nodal force vectors dis-
tributed over the whole computational domain with extraordinary strong forces at
material interfaces and the outer boundary. The outcome of eq. (4.8) is the resultant
ponderomotive force acting on all magnetizable materials in the domain. That is to
say, one cannot immediately distinguish between forces acting on the matrix or on in-
dividual particles. Especially along interfaces, where the magnitude of the nodal forces
is much higher than compared to the volume, the assignment of nodal forces to the
adjoining subdomains is ambiguous. However, if the physical nature of the media is
such that the difference in magnetic permeabilities between the materials is large, then
the ponderomotive forces computed at each interface node will be dominated by the
greater relative permeability. Therefore, we count them among the higher permeable
material. A zoom into the particle as in fig. 2¢, illustrates that the total ponderomotive
force in the subdomain B7 is then

-3 g 1)

IeB?

Due to the nature of this procedure, the boundary integral in eq. (4.7) can be ignored
if the particle does not extend to the edge of the computational domain, that is if
OD; N OBZ = 0. In such a case, the boundary term will not contribute to any relevant
entries in fY".

As before in the strong form calculation, we distinguish also for the weak form
between a smoothing and a non-smoothing technique. This reduces in the case of the
weak form calculation to the £2 projection of the ponderomotive stress tensor oP".
A clarification of the variables used for smoothed and non-smoothed computation can

found in table 2.

5. Numerical examples

For our numerical examples. we consider as basic geometry a cut-out D; of the body
B; as already motivated in fig. 2a. Figure 3 provides a generic description of the
particle problem which will be considered in various scenarios beginning in section 5.2.
A single particle &% is embedded in a surrounding matrix @B} of side-length [ and
thickness t. The blue cross indicates the origin of the domain, while the red cross
marks the centroid of the particle. The elliptical particle, with major and minor axis

12



lengths a and b, is offset by a value o from the origin and rotated through an angle
¢ about the z-axis. For the purpose of simplification, we assume that the influence of
the free space can be ignored and that the magnetic scalar potential is prescribed at
the surface 9D;. The boundary 9D; is split into four subregions 9D} through 9D} to
prescribe different values of .

Figure 3: Diagrammatic sketch of a generic particle problem.

The magnetizable particle is composed completely of iron with a relative perme-
ability of p, = 5000, while the surrounding matrix is only slightly permeable with
a relative permeability of u,, = 10. The constitutive law utilized for all materials
describing a linear magnetic material behaviour is

Ui (F, H) ::%Mo [ —1]JC™': [H® H], (5.1)

where ., is a general place holder for the relative permeabilities and must be replaced
by either p, or pip,.

Within the problems demonstrated in sections 5.1 to 5.3, the displacement degrees-
of-freedom are fixed at zero value in order to concentrate on the magnetic effects.
This represents the instantaneous result at the initial time of a dynamic simulation in
the case of a matrix, or that at any time if the surrounding medium B} represents a
fluid. The constraint on the deformation is dropped in section 5.4. Linear hexahedral
finite elements have been utilized for the magnetic potential field in the computational
simulation of each scenario.

5.1. Validation of the volume force and torque computation for a
magnetizable cube

In order to validate the implementation, we compute the volume force and torque on
a cube for a given magnetic scalar potential and compare the numerical calculation in

13



the strong and the weak form with the analytical solution. We consider a cube with
edge length ¢t = [ = 2mm. The cube is centered at the origin and completely composed
of iron with p, = 5000. The potential field, defined in terms of the spatial coordinates

x = (x,y,7) in mm

pla) =* [z +y+1],
is prescribed for both boundary and volume degrees of freedom. The resulting magnetic
field is shown in fig. 4a.

b in 225
P 6.73¢-+0
5.05e+0
|| 3.37e+0
1.69¢+0
4.07e—3

(a) Magnitude of magnetic
field

—e—Force (WF, NS) Force (SF, NS) --- Torque (SF, NS)
e Force (WF,S) = Force (SF,S) + Torque (SF,S)

100 ¢ ‘ ‘ ‘

Absolute error

! ! ! !
100.6 100.8 101 101.2 101./1

Number of elements on edge

(b) Comparison of resulting ponderomotive volume forces and torque for
the strong and weak implementation against analytical calculation

Figure 4: Numerical validation of ponderomotive volume force and torque for a mag-
netizable cube subject to a prescribed asymmetric potential

The resulting magnetic force is comprised only of volumetric force terms as a single
material extends throughout the computational domain without any discontinuities.
Therefore, the ponderomotive force and torque does not acquire any additional surface
contributions. The analytical solution to the resulting ponderomotive body force,

14



determined directly from the prescribed potential field in conjunction with the linear
magnetic material relationships, is calculated to be

16 |
Jor = om e =11 5 |2 (5.2)
b 0
t

while the resulting torque developed in the body is

0
0. (5.3)
~1

32

/w X b7 = popr [ —1] %

Dy

It should be mentioned here, that the contribution of the magnetic couple g;" ¢ to the
ponderomotive torque is zero for linear magnetic materials, since the magnetization
and the magnetic induction are then in parallel.

Figure 4b illustrates the convergence characteristics of the force and torque com-
puted by the finite element method. As expected, with increasing mesh-refinement,
the solution determined by all methodologies converge linearly towards the analyti-
cal solutions given in egs. (5.2) and (5.3). However, it was observed that using the
weak approach in conjunction with non-smoothed magnetic quantities produced infe-
rior results in comparison to the other methods that produced identical results. The
superiority of the smoothed values is expected as smoothing procedures lead to better
approximations, which have also been used as reference solutions for error estimates
[30, 45]. Tt is also interesting to note that the use of linear elements appears to, in
the limit, have no impact on the quality of the solution. The magnetic torque com-
puted using the strong formulation displayed similar convergence characteristics, with
acceptable results attained at high grid resolution.

5.2. Validation of the surface traction and torque computation for
a single cylindrical particle centered in a symmetric magnetic
field

By considering the effect of an externally generated symmetric magnetic field on an
individual cylindrical particle in a matrix, a validation of the interface force and torque
computations in the strong form (SF) has been achieved. The rigid particle of diameter
a = b = lmm is centered (0 = Omm) within a rectangular box with side length
[ = 10mm' (See fig. 3). For the sake of simplicity, in all cases the geometry has a 2.5d
representation” with the domain extending ¢ = 0.4mm into the third dimension. A
constant potential of £1000A prescribed on two opposing boundary surfaces 9D} UID;
and 0D? U 9D} develops the symmetric potential field shown in fig. 5a.

1 The boundary must be sufficiently distant from the particle for the analytical solution, which
assumes an infinite domain, to remain valid.

2 In these scenarios, it is more precise to say that the particles represent infinitely long fibres of
specified cross-section embedded within a domain of infinite depth.
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@in A t?°" in m];;?
I 1.00e+3 1.02e+1
5.00e+2 7.63e+0
I 0.00e+0 I 5.09¢e+40
—5.00e+2 2.54e+0
o I —1.00e+3 0.00e+0
(a) Symmetric potential (b) Ponderomotive interface

force density computed by
the smooth version of the
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Figure 5: Single cylindrical particle (diameter 1mm) in symmetric magnetic field gen-
erated by a scalar potential prescribed along the whole vertical boundary

Due to the symmetric nature of the magnetic field, no resultant ponderomotive
force or torque is produced. However, the presence of the particle results in a spa-
tially non-homogeneous magnetic field and therefore non-trivial volume force densities
and tractions arise. Development of the analytical solution at the material interface
assumes that the matrix domain extends infinitely in all directions. Using potential
theory [9], it can be demonstrated that the magnetic field at the interface from the
view-point of the particle is

B 2
hy,=|ho| |0] , B=_—Fm_ (5.4)
0 Hp + Hm
while from the matrix side, the magnetic field is
1+ C cos(2¢) B
hy = |heo| | C'sin(2¢) , o=t Hm (5.5)

0 _Np+um

where the azimuthal angle ¢ provides the position of measurement along the circum-
ference of the interface with respect to the direction of the far-field magnetic field.
The magnetic induction and resulting force and torque can be computed after the
application of the constitutive law.

Shown in fig. 5b is the point-wise representation of the ponderomotive traction devel-
oped at the interface between the particle and matrix. The volumetric force developed
within the particle is negligible. However, the interface forces are compressive in the di-
rection perpendicular to the applied external magnetic field and, if left unconstrained,
would result in a deformation of the particle.
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Components of the interface force and the in- and out-of-plane torque densities,
measured radially, are compared in fig. 6 to the analytical solution. It is demonstrated
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(a) Comparison of analytical and numerical strong form solution of pon-
deromotive tractions along mid-circumference of interface
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(b) Comparison of analytical and numerical strong form solution of pon-
deromotive torque densities along upper (+z) circumference of inter-
face

Figure 6: Numerical validation of the smooth form of the strong force computation
(SF, S) of ponderomotive interface force and torque for a single particle
(diameter 1mm) centered in a symmetric magnetic field

that the numerical values fit extremely well to those determined analytically. The
symmetries of the resulting data indicate that, as expected, no resultant force or
torque is induced in the particle.
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5.3. Single cylindrical particle in asymmetric magnetic field

The scenario described in section 5.2 was modified such that the Dirichlet constraints
on 0D} and 9D} were removed. When the particle remains centered within the matrix,
the developed potential field illustrated in fig. 7a results in the magnetic field presented
in fig. 7b. Herein, the influence of the particle on the asymmetric magnetic field can
be clearly observed, as well as the presence of a high field gradient at the intersection
from 0D} to D} and from 0D? to OD.

oin A I in A
I 1.00e+3 7.60e+2
i 5.00e+2 5.70e+2
I 0.00e+40 I 3.80e+2
m f et 1.90e+2
z —1.00e+3 5.57e—1
(a) Asymmetric potential (b) Magnitude of magnetic field

vector

Figure 7: Single cylindrical particle (diameter 1mm) in asymmetric magnetic field gen-
erated by a scalar potential prescribed along parts of the vertical boundary

Due to the asymmetric potential field and the location of the particle, the volu-
metric and interface ponderomotive forces are non-symmetric overall, but do exhibit
symmetry about the y-z plane. As can be inferred from fig. 8, the interface forces gen-
erate an overall upwards contribution (in the positive y direction) while the volumetric
forces act downwards. Overall, the volume terms dominate and the resulting force,
and therefore the displacement in the non-rigid case, is in the negative y direction.

In the forthcoming examples, we study the influence of grid refinement, size and
offset as well as shape of the particle on the resultant ponderomotive force and torque.
The outer dimensions of the computational domain Dy, edge length [ and thickness
t, remain unchanged as in section 5.2. The same holds for the particle’s diameter,
a = b = 1mm, and offset 0 = Omm within section 5.3.1. This changes in sections 5.3.2
and 5.3.3, as we explicitly investigate the influence of the particle’s radius and the offset
when shifting the particle from the center of the computational domain to the left. In
section 5.3.4 we do no longer consider a cylindrical particle, but an elliptical instead
and calculate the resultant ponderomotive force and torque for varying inclinations of
the ellipse.
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Figure 8: Nodal representation of ponderomotive force densities computed by the
smooth version of strong force implementation (SF, S) in the magnetized
particle (diameter 1mm) centered in an asymmetric magnetic field

5.3.1. Effect of grid refinement

To assess the effect of grid refinement on the accuracy of the force computation, we
determine the total ponderomotive force by the strong and the weak technique and
compare both results for different refinements. The result of the convergence study is
shown in fig. 9a for the particle B? and in fig. 9b for the entire computational domain
D;. The outer edge with length [ was the primary focus of refinement, but additional
refinement in other areas of the domain was performed to maintain a largely consistent
aspect ratio of the elements.

The results demonstrate that all calculation approaches tend to converge to a com-
mon value for the force generated within the particle and the entire domain. Focusing
on the particle, the method derived from the weak formulation predicts a lower force
than that from the strong formulation. The use of smoothed or non-smoothed magnetic
quantities is almost negligible for the strong form computation, while it is significant
in the weak case. In terms of computing the resultant force on the entire domain, the
weak approach produces more consistent results as the deviation from the limit value
is already small for the coarsest mesh. Non-smooth quantities underestimate the resul-
tant domain force in comparison to the computation with smoothed quantities. When
comparing the force values in fig. 9a in contrast to those in fig. 9b, a supplementary
observation is that the total force generated in the matrix is far greater than that in
the particle. This can be attributed to the volume difference between the particle and
the surrounding medium.

Overall, the difference in results between the two methods of magnetic force compu-
tation is minor. The one derived from the virtual work equation is easy to implement
and, relative to the strong method, quick to compute. However, the second procedure
derived directly from the strong form of the governing equations provides insights with
greater detail as we can easily distinguish between forces acting on the material inter-
face and those generated inside the volume. Furthermore, it is possible to compute the
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Figure 9: Computed y-component of ponderomotive force generated within the particle
(diameter Imm) and the entire domain for increasing number of elements on
edge with length [

ponderomotive torque using the second approach. Therefore, from this point on, we
will focus on the latter framework in conjunction with the smoothing of the magnetic
quantities prior to post-processing.

5.3.2. Size effect

With the center of the particle remaining in the center of the domain, we reduce
the diameter of the particle and observe a considerable difference in the magnetic
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effects. Illustrated in fig. 10 is the magnetic field in the particle and a diagrammatic
representation of the resulting ponderomotive force. As the particle is decreased in
size, the magnetic field that permeates the particle becomes more uniform and the
generated force declines.

‘ A

[ in mm

6.32e—1

6.13e—1

/ \ _

| 5.95e—1

\ 7 5.76e—1

- 5.57e—1
(a) Diameter 1mm (b) Dlameter (¢) Diameter (d) Dlameter
~1/2m 10~ 'mm 1073/2m

Figure 10: Magnetic field and ponderomotive resultant force ((SF, S) computation) de-
veloped within the magnetized particle with varying diameter in an asym-
metric field. The force vector are not to scale.

When comparing the tractions along the interface of the smallest particle in fig. 11
with those of the largest particle in fig. 8, the uniformity of the internal and external
field in the smaller case results in a reduction of the resultant interface force. However,
both the volume and surface force densities developed in the smaller particle remain
of similar magnitude to that of the larger one. Nevertheless, the resulting forces are
smaller due to the difference in surface area and volume.

\ Wy

thon iy N

t mm?2
5.54e+0
4.15e+0

| 2.77e+0
1.38e+0
0.00e+0

U \

Figure 11: Nodal representation of ponderomotive interface force density ((SF, S)
computation) produced in the smallest magnetized particle (diameter
1073/2mm) centered in an asymmetric field.

Depicted in fig. 12 is the relationship between the particle size and the induced
ponderomotive force. The exponent of the force magnitude decreases proportionally
to the exponent of the particle diameter. The relationship is due to the effective ho-
mogenization of the internal magnetic field, as well as the 2.5d nature of the geometry.
In all cases, the reduction in volume force coincides with a reduction in the interface
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force resulting in a constant ratio between the forces. The ratio of volume to interface
force magnitudes is approximately 1.9 in each case.

—e— Force (volume) == Force (interface) ‘
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—— o ——1 S ——
1072 107! 100
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107°

Figure 12: Interface and volume forces calculated with the strong form calculation (SF,
S) in the magnetized particle with varying diameter in an asymmetric field.

5.3.3. Particle location

As the particle is moved laterally towards the source of the magnetic field, its influence
on the surrounding magnetic field becomes more pronounced. Depicted in fig. 13
is the potential and magnetic field developed for a 1mm diameter particle offset by
o = 2.5mm in the negative x direction. When comparing fig. 13a with fig. 7b, the effect
of shifting the position of the particle becomes evident. The magnetic potential within
the domain is no longer symmetric and the magnetic field developed in the vicinity of
the particle is non-uniform.

A substantial increase in both volume and interface forces results from the higher
potential gradient in and around the particle. The force densities shown in fig. 14
indicate that the resulting forces still act to deform and translate the particle. The
volumetric force is aligned with the gradient of the potential field (downwards and to
the left), and dominates the resulting interface force which acts in a direction nearly
orthogonal to the former. Both force density fields are completely non-homogeneous
due to the non-uniformity of the potential field.

Figure 15 presents a gradated illustration of the result of shifting the rigid particle
to the left. The strength of the induced magnetic field within the particle increases
considerably as the particle is moved towards the boundary D}. Furthermore, the
average direction of the gradient of the potential field in and around the particle is
rotated negatively about the z-axis. These observations collectively result in a total
ponderomotive force vector that increases with the offset in magnitude and orientation
towards the boundary D}. The particle is attracted to the source of the potential,
provided that its initial position is non-centered. It is also observed that the effective
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Figure 13: Cylindrical particle in asymmetric magnetic field immersed into elastomer
and offset by 0 = 2.5mm to the left side along the x-axis
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Figure 14: Nodal representation of ponderomotive interface and volume force density
((SF, S) computation) produced in the magnetized particle (diameter 1mm)
offset by 2.5mm in an asymmetric field

ponderomotive moment, measured around the particle center of mass, increases as well.
Thus, the particle would undergo rotation as it translates in a non-rigid situation and
the degree of rotation would increase as the particle moves.

As can be seen in fig. 16, the strength of the attraction to the potential source and
the out-of-plane torque of the particle increase non-linearly as the horizontal offset is
increased. However, the trend is such that once the particle is closer than 2mm to the
boundary on the vertical centerline of Dy, the horizontal component of the magnetic
force will exceed the vertical component. The magnitude of the generated torque is
small due to the shape of the particle.
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Figure 15: Magnetic field, ponderomotive resultant force and torque ((SF, S) compu-
tation) in the magnetized particle (diameter Imm)with varying position in
an asymmetric field. In this diagram, the force and torque arrows display
the direction and magnitude relative to the case of maximal offset.

5.3.4. Particle shape and orientation

Lastly, we investigate the influence of the orientation of an elliptical particle, which is
offset by o = 1.5mm from the centre of D,. The particle was elongated by stretching
the major axis such that 7 = 2. Changing the value of ¢, rotates the particle in
place. This rotation influences not only the alignment of the major axis of the particle
with the magnetic field but also the distance of the particle-matrix interface to the
intersection line D} N D; with high potential gradients.

Figure 17 illustrates the effect of the orientation on the ponderomotive force gener-
ated at the particle-matrix interface for an inclination of ¢ = +45 and ¢ = —45. Due
to its disturbance of the magnetic field, large interface forces are generated when the
particle is aligned with the magnetic field (fig. 17a). In both cases, there is an evident
asymmetry in the traction force generated in each quadrant of the particle, which is
expected to lead to the generation of a torque around the particle’s centroid.

As is indicated in fig. 18a, regardless of orientation of the particle, the vertical
component of the resultant ponderomotive force acts downwards. The volume and
traction forces oppose each other, while the volume contribution dominates. The
interplay between the x-components of the interface and volume forces is more complex
in the sense that it is possible to cancel each other out. If this is not the case, then
the force tends to attract the particle towards the source of potential D}. The sign
of the x-component of the volume and interface forces is determined by the particle’s

24



—o— X-force (total) —e=Y-force (total) ‘

0
—0.11- -
z | |
5] - 4
2
&
L L 1 L L 1 L
—-2.5 -2 —-1.5 -1 —0.5 0
Offset [mm]
(a) Total ponderomotive force
‘ —e— Z-torque (total) ‘
0.15
= P
g C B
g 0.1
Z
o
g L
£ 5102 a
& L
1 1 1 1
92.5 -2 —-1.5 -1 —-0.5

Offset [mm]

(b) Total ponderomotive torque

Figure 16: Interface and volume forces and magnetic torque ((SF, S) computation) pro-
duced in the magnetized particle (diameter 1mm) offset in an asymmetric

field.

orientation.
Figure 18b indicates that the induced particle torque is almost completely derived

from the interface contribution. The magnitude of the developed torque does not
correlate with the overall magnetic force acting on the particle. The direction of the
torque changes as the alignment of the major axis is changed from being parallel to
perpendicular to the average magnetic field direction. Again, it is possible to orientate
the particle such that no resultant torque is produced (at ¢ approximately equal to
—85° and 10°). The maximal and minimal values of the torque are attained at —30°
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Figure 17: Nodal representation of ponderomotive interface force density ((SF, S) com-
putation) arising from rotation of an elliptical particle offset in an asym-
metric magnetic field.

and 45° respectively.

5.4. Translation of particles under the influence of a magnetic field

In our final examples, we drop the constraint on the displacement degrees of free-
dom and let the particle travel as the magnetic field forces it to do. Besides the
magnetic material parameters, which remain as before, we assign mechanical proper-
ties of bulk modulus and shear modulus to the stiff particle (k = 121.39 - 103MPa,
p = 59.28 - 103MPa, p1,, = 5000) and the very soft, non-magnetizable carrier material
(k = 3.71MPa, u = 0.38MPa, u,, = 1). For the moment, we assume a Neo-Hookean
type material model for all composites amended by the magnetic free field energy
eq. (5.1).

For the results presented in fig. 19, the geometric setup and the boundary conditions
are the same as in section 5.3.1 and section 5.3.2 for a particle with the diameter of
1mm. As we have seen earlier, the resultant ponderomotive force acts downwards and
thus causes the particle to travel in negative y direction towards the bottom boundary
of the computational domain.

The geometric setup to generate the results in fig. 20 corresponds to section 5.3.3
with a particle offset of 15mm. However, the scalar potential is now prescribed along
the whole boundary (D} U D} and D? U D}) to avoid large potential gradients at
the middle of the vertical boundaries. The resulting deformation tends towards the
left because the particle is attracted to the boundary where the positive potential is
applied.

In our final example, we consider the system in fig. 21, where two particle B} and B}
are immersed into a carrier material BZ. The magnetic scalar potential is prescribed
along the boundary D! and D™ thus generating a vertically aligned magnetic
field fig. 22a. The computational domain has the dimensions w = 9mm, [ = 14mm,
t = 0.4mm. The particles with a diameter of lmm are located at (0.75,0.75)mm and
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Figure 18: Interface and volume forces and magnetic torque produced in the magne-
tized elliptical particle offset and rotated in an asymmetric field.

(=0.75,—0.75)mm. Thus, the distance between them is about d = 37‘/5 ~ 2.12mm
and the angle between the axis connecting the two and the undisturbed magnetic field
is 45°. The material parameters for both particles are the same as given above. As
can be observed in section 5.4, the particles rotate around each other are attracted at
the same time until they would eventually get in contact. The ponderomotive force
vectors increase gradually throughout the simulation accelerating the particle more
and more towards the center. The path predicted by our calculation (black solid line)
bends quickly inwards taking into account the constantly increasing magnetic field.
Similar results have been reported in [16] (white dashed line), where two particles are
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Figure 19: Magnetized particle (diameter 1mm) in an asymmetric magnetic field plot-
ted in deformed configuration (scaled by factor 3). Translation towards the
bottom boundary, evasive movement of the matrix.

immersed into in a fluid under the influence of a constant magnetic field. The deviation
of the two pathways is to explain by the different applied magnetic fields and initial
geometric setup.

All simulations including displacement are limited by large deformations and cor-
responding distortions of the mesh occurring in close proximity of the particle-matrix
interface.

6. Conclusion

We have demonstrated two methods of computing localized and global ponderomo-
tive forces and torques generated within magnetizable media. These calculations have
been embedded within a finite element framework for large strain magneto-elasticity,
derived from the classical descriptions of magnetostatics. The weak form of the cou-
pled problem as based on the magnetic field as independent variable. Exploiting the
constitutive law, allows a computation of the ponderomotive force and torque in terms
of the magnetization and the magnetic induction, which aligns well with physics. The
force and torque implementation has been verified against analytical solutions and
the convergence properties of each investigated under numerous rigid scenarios. Over-
all, it was demonstrated that the strong form method that allows for the analysis of
localized force and torque generation, restricted to individual particles, showed the
most practical use and best convergence properties. The force computation derived
from the weak variational form was also demonstrated to be accurate and useful in
the determination of localized forces when the ratio of the relative permeabilities of
the particles and carrier was large. The effect of the externally applied magnetic field
on generation of interface and volume forces and torques has been presented under
uniform and non-uniform fields, with particles of different size, shape and location.
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Figure 20: Magnetized particle (diameter 1lmm) offset by 15mm in a symmetric mag-
netic field plotted in deformed configuration (scaled by factor 10). Attrac-
tion towards the boundary with positive magnetic scalar potential.

Figure 21: Diagrammatic sketch of two magnetized particles (diameter 1lmm) at 45°
and 3v/2 /2mm distance in symmetric potential.
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Figure 22: Two magnetized particles (diameter 1mm) at 45° and 3v/2/2mm distance
in symmetric potential. Rotation around common pivot at center point of
computational domain.

The interplay between the bulk and surface forces has been discussed in terms of their
effect on predicted particle movement and deformation.
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A. Derivation of split representation of stresses for the
Legendre transformed case

The elastic and magnetization stresses can be derived from the material constitutive
law in the following manner:
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Using the push-forward operation, the Piola stresses are transformed to their spatial
counterparts o = P - cof F~! via
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B. Derivation of boundary formulation for magnetic
force computation

Noting the domain decomposition shown in fig. 2, the virtual work performed by the
ponderomotive force defined in eq. (2.21) acting on the computational domain D is

6WP°“::/§cp-b£’°"+ / Sep - 7", (B.1)
Dy oB?
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where d¢p is the virtual displacement. Application of eq. (2.11); and the divergence
theorem to the volume integral leads to

/ 6Lp . bi)on
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= / S - [oP" - ng] - /Vm&p toPon (particle) (B.2)
o2 B2
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o2 oD, B!

Using eq. (2.20) to collect terms pertaining to internal material interfaces results in

the

domain virtual work
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